Home
Class 12
MATHS
If y=cos^(-1)x , find (d^2y)/(dx^2) in t...

If `y=cos^(-1)x` , find `(d^2y)/(dx^2)` in terms of `y` alone.

Text Solution

Verified by Experts

`y=cos^(-1)x,`
`"or "x=cos y`
Differentiating w.r.t. y, we get
`(dx)/(dy)=-sin y`
`"or "(dy)/(dx)=-cosec y`
Differentiating w.r.t. x, we get
`(d^(2)y)/(dx^(2))=(d)/(dx)(-cosec y)`
`=(d)/(dy)=(-"cosec "y)(dy)/(dx)`
`="cosec y cot y (-cosec y)"`
`-cot ycdot cosec^(2) y`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

"If "y=cos^(1)x, "find "(d^(2)y)/(dx^(2)) in terms of y alone.

If y=cos^(-1)x, find (d^(2)y)/(dx^(2)) in terms of y alone.

If y=cos^(-1)x, find (d^(2))/(dx^(2)) in terms of y alone

If quad y=cos^(-1)x Find quad (d^(2)y)/(dx^(2)) in terms of y alone.

If y=tan^(-1)x, find (d^(2)y)/(dx^(2)) in terms of y alone.

If y=tan^(-1)x find (d^(2)y)/(dx^(2)) in terms of y alone.

if y=tan^(-1)x, find (d^(2)y)/(dx^(2))

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y=log(sin x), find (d^(2)y)/(dx^(2))

If y=x^(x), find (d^(2)y)/(dx^(2))