Home
Class 12
MATHS
If (x-a)^2+(y-b)^2=c^2, for some c > 0, ...

If `(x-a)^2+(y-b)^2=c^2`, for some `c > 0`, prove that `([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2))`is a constant independent of a and b.

Text Solution

Verified by Experts

`" We have "(x-a)^(2)+(y-b)^(2)=c^(2),cgt0`
Differentiating w.r.t. x, we get
`2(x-a)+2(y-b)y'=0`
`"or "(x-a)+(y-b)y'=0`
`"or "y'(x-a)/(y-b)`
Differentiating (1), w.r.t. x again, we get
`1+(y')^(2)+(y-b)y''=0`
`therefore" "([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2)))=([1+(y')^(2)]^(3/2))/(([-1+(y')^(2)])/(y-b))`
`=-(y-b)[1+(y')^(2)]^(1/2)`
`=-(y-b)[1+((x-a)/(y-b))^(2)]^(1/2)`
`=-[(y-b)^(2)+(x-a)^(2)]^(1/2)`
`=-c`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If (x-a)^(2)+(y-b)^(2)=c^(2) for some for some prove that prove that ([1+((dy)/(dx))^(2)]^((3)/(2)))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2), for some c>0[1+((dy)/(dx))^(2)]^((3)/(2)) provethat ([1+((dy)/(dx))^(2)]^((3)/(2)))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^2+(y-b)^2=c^2\ \ (c >0) then ([1+((dy)/(dx))^2]^(3//2))/((d^2y)/(dx^2)) equals c (b) c^2 (c) c^3 (d) c^4

If y=a+(b)/(x) ; prove that x(d^(2)y)/(dx^(2))+2(dy)/(dx)=0

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y=log(1+cos x), prove that (d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0