Home
Class 12
MATHS
If y=e^acos^((-1)x),-1lt=x<1,s howt h a ...

If `y=e^acos^((-1)x),-1lt=x<1,s howt h a t` `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-a^2y=0`

Text Solution

Verified by Experts

`y=e^(a cos^(-1)x)`
`therefore" "(dy)/(dx)=e^(a cos^(-1)x)(-a)/(sqrt(1-x^(2)))=(-ay)/(sqrt(1-x^(2)))`
`"or "(1-x^(2))((dy)/(dx))^(2)=a^(2)y^(2)`
Differentiating both sides with respect to x, we get
`((dy)/(dx))^(2)(-2x)+(1-x^(2))xx2(dy)/(dx)cdot(d^(2)y)/(dx^(2))=a^(2)cdot2ycdot(dy)/(dx)`
`"or "-x(dy)/(dx)+(1-x^(2))(d^(2)y)/(dx^(2))=a^(2).y[(dy)/(dx)ne0]`
`"or "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=e^(acos^(-1)x),-1lexle1 , show that : dy/dx=(-ae^(acos^(-1)x))/(sqrt(1-x^(2)))

If y=e^acos^((-1)x) , then prove that (1-x^2)y_2-x y_1-a^2y=0 .

If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx) is equal to

If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) , then "………"lt y lt "………" .

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

If y=tan^(-1)((2)/(e^(-x)-e^(x)))" then "(1+e^(2x))y_(1)=

If y=acos(lnx)+bsin(lnx) then prove that x^2y_3+3x y_2+2y_1=0

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1