Home
Class 12
MATHS
If x=a(cost+tsint) and y=a(sint-tcost),f...

If `x=a(cost+tsint)` and `y=a(sint-tcost),fin d(d^2y)/(dx^2)dot`

Text Solution

Verified by Experts

It is given that x =a (cos t + t sin t) and
y=a (sin t - t cos t). Therefore,
`(dx)/(dt)=a[-sin t+ sin t + t cos t]= at cos t`
`(dy)/(dt)=a [ cos t -{cos t - t sin t} ] = at sin t`
`therefore" "(dy)/(dx)=(((dy)/(dt)))/(((dx)/(dt)))=(at sin t)/(at cos t)= tan t`
`"Then, "(d^(2)y)/(dx^(2))=(d)/(dx)((dy)/(dx))=(d)/(dx)(tan t)`
`=(d)/(dt) (tan t)(dt)/(dx)`
`=sec^(2) t. (dt)/(dx)`
`sec^(2)t. (1)/(at cos t)`
`(sec^(3) t)/(at)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=a(cost+tsint) and y=a(sint- tcost) , find (d^2y)/(dx^2) .

If x=a(cost+tsint) and y=a(sint-tcost) , find (d^(2)y)/(dx^(2)) .

If x=a(cost+tsint),y=a(sint-tcost)," then "((dx)/(dt))^(2)+((dy)/(dt))^(2)=

If x=a(tsint)andy=(1-cost), then find (d^(2)y)/(dx^(2)) .

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

If x=a(2cost+cos2t),y=a(2sint+sin2t)," then "(dy)/(dx)=

If x=a(t+sint),y=a(1-cost)," then "(dy)/(dx)=

If y=x^(x), find (d^(2)y)/(dx^(2))

If y=x^(x), find (d^(2)y)/(dx^(2))

Solve: (d^2y)/dx^2=x