Home
Class 12
MATHS
Given that cos(x/2).cos(x/4).cos(x/8).....

Given that `cos(x/2).cos(x/4).cos(x/8)..... = sinx/x` Prove that `(1/2^2)sec^2(x/2) +(1/2^4)sec^2(x/4) +..... = cosec^2x - 1/(x^2)`

Text Solution

Verified by Experts

`"We have "cos""(x)/(2)cdotcos""(x)/(4)cdotcos""(x)/(8)...=(sin x)/(x)." Then find the sum "(1)/(2^(2))sec^(2)""(x)/(2)+(1)/(2^(4))sec^(2)""(x)/(4)+...`
Taking log on both sides, we get
`log cos""(x)/(2)+log cos""(x)/(4)+log cos""(x)/(8)...+...=log sin x-log x`
Differentiating both sides with respect to x, we get
`-(1)/(2)(sin""(x)/(2))/(cos""(x)/(2))-(1)/(4)(sin""(x)/(4))/(cos""(x)/(4))-(1)/(8)(sin""(x)/(8))/(cos""(x)/(8))...=(cos x)/(sin x)-(1)/(x)`
`"or "-(1)/(2)tan""(x)/(2)-(1)/(4)tan""(x)/(4)-(1)/(8)tan"(x)/(8)-...=cot x -(1)/(x)`
Differntiating both sides with respect to x, we get
`-(1)/(2^(2))sec^(2)""(x)/(2)-(1)/(4^(2))sec^(2)""(x)/(4)-(1)/(8^(2))sec^(2)""(x)/(8)-...=-cosec^(2)x+(1)/(x^(2))`
`"or "(1)/(2^(2))sec^(2)""(x)/(2)+(1)/(4^(2))sec^(2)""(x)/(4)+(1)/(8^(2))sec^(2)""(x)/(8)+...=cosec^(2)x-(1)/(x^(2))`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Given that (cos x)/(2)*(cos x)/(4)*(cos x)/(8)...=(sin x)/(x) Then find the sum (1)/(2^(2))(sec^(2)x)/(2)+(1)/(2^(4))(sec^(2)x)/(4)+...

If cos(x)/(2).cos(x)/(2^(2))*cos(x)/(2^(3))...oo=(sin x)/(x), then find the value of (1)/(2^(2))sec^(2)(x)/(2)+(1)/(2^(4))sec^(2)(x)/(2^(2))+(1)/(2^(6))sec^(2)(x)/(2^(3))+...oo

Prove that :cos4x=1-8sin^(2)x cos^(2)x

Prove that : 2sec^(2)x-sec^(4)x-2cos ec^(2)x+cos ec^(4)x=(1-tan^(8)x)/(tan^(4)x)

Prove that: cos^(2)2x-cos^(2)6x=sin4x sin8x

Prove that cos^(-1)(3x-4x^3)=3cos^(-1)x,x in[1/2,1]

Prove that: 1+cos2x+cos4x+cos6x=4cos x cos2x cos3x

Prove that (1)/(sec x-tan x)+(1)/(sec x+tan x)=(2)/(cos x)

Prove that (sec8x-1)/(sec4x-1)=(tan8x)/(tan2x)

1+ cos 2x+ cos4x + cos 6x=