Home
Class 12
MATHS
If Pn is the sum of a GdotPdot upto n te...

If `P_n` is the sum of a `GdotPdot` upto `n` terms `(ngeq3),` then prove that `(1-r)(d P_n)/(d r)=(1-n)P_n+n P_(n-1),` where `r` is the common ratio of `GdotPdot`

Text Solution

Verified by Experts

Let the first term of G.P. be `alpha`. Then
`P_(n)=alpha[(1-r^(n))/(1-r)]`
`(dp_(n))/(dr)=alpha[((1-r)(-nr^(n-1))+(1-r^(n)))/((1-r^())^(2))]`
`therefore" "(1-r)(dP_(n))/(dr)=alpha((-nr^(n-1)+nr^(n))/(1-r))+((1-r^(n))/(1-r))alpha`
`=alphan.((1.r^(n-1)-1+r^(n))/(1-r))+P_(n)`
`=ncdotP_(n-1)-nP_(n)+P_(n)`
`=(1-n)P_(n)+nP_(n-1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If P_(n) is the sum of a G.P. upto n terms (n>=3), then prove that (1-r)(dP_(n))/(dr)=(1-n)P_(n)+nP_(n-1), where r is the common ratio of G.P.

Prove that P(n;r)=nP_(r)=n(!)/(n-r)!

11. Prove that nP_(r)=n(n-1)P_(r-1)

Prove that .^(n-1)P_(r)+r.^(n-1)P_(r-1)=.^(n)P_(r)

If S_(n) is the sum of a G.P. to n terms of which r is the common ratio, then : (r-1)*(d)/(dr)(S_(n))+nS_(n-1)=

Prove that ""^(n)P_(r )= ""^(n)C_(r )*^rP_(r ) .

Show that ^(^^)nP_(r)=(n-r+1)^(n)P_(r-1)

If show that "^(n-1)P_r = (n-r).^(n-1)P_(r-1)

(n-1)P_(r)+r.n-1)P_(n-1) is equal to

What is ""^(n-1)P_(r )+ ""^(n-1)P_(r-1) ?