Home
Class 12
MATHS
If |a1sinx+a2sin2x++ansinn x|lt=||sinx| ...

If `|a_1sinx+a_2sin2x++a_nsinn x|lt=||sinx|` for `x in R ,` then prove that `|a_1+2a_1+3a+3+n a_n|lt=|`

Text Solution

Verified by Experts

Clearly, we can get `a_(1)+2a_(2)+3a_(3)+…+na_(n),` by differentiating `a_(1) sin x +a_(2) sin 2x + …+a_(n)` sin nx and then putting x=0.
Thus, we have to prove that `|f'(0)|le1.`
where, `f(x)=a_(1) sin x +a_(2) sin 2x +…+a_(n) sin nx`
`therefore" "f'(x)=a_(1) cos x +2a_(2) cos 2x +...+na_(n) cos nx`
`"or "f'(0)=a_(1)+2a_(2)+...+na_(n)`
Also, given `|f(x)|le| sin x |" for "x in R" (1)"`
Put x=0. Then `|f(0)|le or f(0)=0.` Now,
`f'(0)=underset(hrarr0)lim(f(h)-f(0))/(h)=underset(hrarr0)lim(f(h))/(h)" [as f(0) = 0]"`
`"or "|f'(0)|=underset(hrarr0)lim|(f(h))/(h)|leunderset(hrarr0)lim|( sin h)/h|=1 [as |f(x)|le| sin x|]`
`"Hence, "|f'(0)|le1.`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

|a_(1)sin x+a_(2)sin2x++a_(n)sin nx|<=|sin x| for x in R, then prove that |a_(1)+2a_(1)+3a+3+na_(n)|<=1

If a_1,a_2,a_3,...,a_n be in AP whose common difference is d then prove that sum_(i=1)^n a_ia_(i+1)=n{a_1^2+na_1d+(n^2-1)/3 d^2} .

If (a_1+ib_1)(a_2+ib_2)...(a_n+ib_n) = x+iy , prove that : (a_1^2+b_1^2)(a_2^2+b_2^2)...(a_n^2+b_n^2)=x^2+y^2 .

If (a_1+ib_1)(a_2+ib_2)...(a_n+ib_n) = x+iy , prove that : tan^-1frac(b_1)(a_1)+tan^-1frac(b_2)(a_2)+...+tan^-1frac(b_n)(a_n)=tan^-1fracyx .

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then

If 0 lt x_(1) lt x_(2) lt x_(3) lt pi then prove that sin ((x_(1) + x_(2) + x_(3))/(3)) gt (sin x_(1) + sin x_(2) + sin x_(3))/(3) . Hence or otherwise prove that if A, B, C are angles of triangle then maximum value of sinA + sin B + sin C is (3sqrt3)/(2)

If a_1,a_2,a_3,.....,a_n are in AP, prove that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n) .