Home
Class 12
MATHS
"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan...

`"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3))`. Then find the value of f'(0).

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(0) \) of the function \[ f(x) = \frac{(2^x + 2^{-x}) \sin x \sqrt{\tan^{-1}(x^2 - x + 1)}}{(7x^2 + 3x + 1)^3}, \] we will use the definition of the derivative: \[ f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}. \] ### Step 1: Calculate \( f(0) \) First, we need to evaluate \( f(0) \): \[ f(0) = \frac{(2^0 + 2^{-0}) \sin(0) \sqrt{\tan^{-1}(0^2 - 0 + 1)}}{(7(0)^2 + 3(0) + 1)^3}. \] Calculating each term: - \( 2^0 + 2^{-0} = 1 + 1 = 2 \) - \( \sin(0) = 0 \) - \( \tan^{-1}(0^2 - 0 + 1) = \tan^{-1}(1) = \frac{\pi}{4} \) so \( \sqrt{\tan^{-1}(1)} = \sqrt{\frac{\pi}{4}} = \frac{\sqrt{\pi}}{2} \) - \( 7(0)^2 + 3(0) + 1 = 1 \) so \( (1)^3 = 1 \) Thus, \[ f(0) = \frac{2 \cdot 0 \cdot \frac{\sqrt{\pi}}{2}}{1} = 0. \] ### Step 2: Substitute into the derivative formula Now we substitute \( f(0) \) into the derivative formula: \[ f'(0) = \lim_{x \to 0} \frac{f(x) - 0}{x} = \lim_{x \to 0} \frac{f(x)}{x}. \] ### Step 3: Substitute \( f(x) \) Substituting \( f(x) \): \[ f'(0) = \lim_{x \to 0} \frac{(2^x + 2^{-x}) \sin x \sqrt{\tan^{-1}(x^2 - x + 1)}}{(7x^2 + 3x + 1)^3 \cdot x}. \] ### Step 4: Evaluate the limit Now we evaluate the limit as \( x \to 0 \): 1. **Evaluate \( 2^x + 2^{-x} \)**: As \( x \to 0 \), \( 2^x \to 1 \) and \( 2^{-x} \to 1 \) so \( 2^x + 2^{-x} \to 2 \). 2. **Evaluate \( \sin x \)**: As \( x \to 0 \), \( \sin x \to x \). 3. **Evaluate \( \tan^{-1}(x^2 - x + 1) \)**: As \( x \to 0 \), \( x^2 - x + 1 \to 1 \), thus \( \tan^{-1}(1) = \frac{\pi}{4} \) and \( \sqrt{\tan^{-1}(1)} \to \frac{\sqrt{\pi}}{2} \). 4. **Evaluate the denominator**: \( 7x^2 + 3x + 1 \to 1 \) as \( x \to 0 \), hence \( (1)^3 = 1 \). Putting it all together: \[ f'(0) = \lim_{x \to 0} \frac{(2)(x)\left(\frac{\sqrt{\pi}}{2}\right)}{1 \cdot x} = \lim_{x \to 0} \frac{2 \cdot x \cdot \frac{\sqrt{\pi}}{2}}{x} = \sqrt{\pi}. \] ### Final Answer Thus, the value of \( f'(0) \) is \[ \sqrt{\pi}. \]

To find the derivative \( f'(0) \) of the function \[ f(x) = \frac{(2^x + 2^{-x}) \sin x \sqrt{\tan^{-1}(x^2 - x + 1)}}{(7x^2 + 3x + 1)^3}, \] we will use the definition of the derivative: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

f(x)=(2^x+2^(-x)(tanx)sqrt(tan^-1(2x^2-3x+1)))/(7x^2-3x-1)^3 , then find f'(0)

Let f(x)=tan^(-1)((x^(3)-1)/(x^(2)+x)) , then the value of 17f'(2) is equal to

if: f(x)=(sin x)/(sqrt(1+tan^(2)x))-(cos x)/(sqrt(1+cot^(2)x)), then find the range of f(x)

If 2f(x)+3f(-x)=x^(2)-x+1, find the value of f'(1)

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

" (1) If "f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0);" then find the value of "f(x)

Let f(x)=1+x ln(x+sqrt((x^(2))+1))-sqrt((1)+x^(2))andh(x)=f(x)-f^(2)(x)+f^(3)(x) Then.

If f(x)=x^(2)+2x+2,x ge-1 =x^(3)+3x+1, x lt-1 then find the value of f(f(-2)):