Home
Class 12
MATHS
y=e^(sin x^(3))...

`y=e^(sin x^(3))`

Text Solution

Verified by Experts

The correct Answer is:
`e^(sin x^(2))cos x^(2)2x`

`"Let "y=e^(sinx^(2)).`
Putting `x^(2)=v and u=sin x^(2) = sin v,` we get
`y=e^(u),u=sin v, and v=x^(2)`
`therefore" "(dy)/(du)=e^(u),(du)/(dv)=cos v, and (dv)/(dx)=2x`
`"Now, "(dy)/(dx)xx(dy)/(du)xx(du)/(dv)xx(dv)/(dx)`
`=e^(u)cos v 2=e^(sin v)cos v 2x`
`=e^(sin x^(2))cos x^(2)2x`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let y=e^(x sin x^(3))+(tan x)^(x)*Fin dquad (dy)/(dx)

If y =e ^(x sin (x ^(3)))+(tan x)^(x) then (dy)/(dx) may be equal to:

Find (dy)/(dx) , when: y=e^(x)sin^(3)xcos^(4)x

If y=e^(sin^(2)x) then (dy)/(dx)=

find the derivative of y=e^(sin sqrt(x))

y=e^(3x).sin^(2)x.logx

if y=e^(sin^(2)x+sin^(4)x+sin^(6)x+.........oo) then find (dy)/(dx)

If y=e^(x)+(sin x)^(x) , then (dy)/(dx) = ?

If y=e^(3x) sin ^(2)x log x ,then (dy)/(dx)=