Home
Class 12
MATHS
Find (dy)/(dx) for the functions: y=(x+s...

Find `(dy)/(dx)` for the functions: `y=(x+sinx)/(x+cosx)`

Text Solution

Verified by Experts

The correct Answer is:
`(cos x - sinx + x(cos x + sin x)+1)/((x+ cos x)^(2))`

Using quotient rule, we have
`(dy)/(dx)=(d)/(dx)((x+ sin x)/(x+ cos x))`
`=((x+ cos x).(d)/(dx)(x+ sin x)-(x + sin x).(d)/(dx)(x+ cos x))/((x+ cos x)^(2))`
`=((x+cos x)cdot(1 + cos x)-( x+ sin x)cdot(1-sin x))/((x+cos x)^(2))`
`=(x+cos x + x cos x +cos^(2)x-x- sin x + x sin x + sin^(2)x)/((x+ cos x )^(2))`
`=(cos x - sin x + x cos x + x sin x + cos^(2) x + sin ^(2) x)/((x+ cos x)^(2))`
`=(cos x - sin x + x (cos x + sin x)+1)/((x+ cos x)^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when If y = (cos x + sinx)/(cos x - sinx) , show that (dy)/(dx) = sec^(2) (x + (pi)/(4)) .

Find dy/dx of the function given in : x^(y)+y^(x)=b

Find dy/dx of the function given in : y^(x)=x^(y)

Find (dy)/(dx) as a function of x y=(2x+1)^(5)

Find (dy)/(dx) as a function of x y= (1-x/7)^(-7)

Find (dy)/(dx) , when: y=x^(sinx)+(sinx)^(cosx)

Find (dy)/(dx) , if y=(sinx)^(cosx)

Find (dy)/(dx) as a function of x y = (4-3x)^(9)