Home
Class 12
MATHS
"If "log(e)(log(e) x-log(e)y)=e^(x^(2(y)...

`"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).`

Text Solution

Verified by Experts

The correct Answer is:
`(1+e^(e^(2)))/(e)`

We have
`log_(e)(log_(e)x-log_(e)y)=e^(x^(2)y)(1-log_(e)x)" ...(1)"`
`"For "x =e, log_(e)(1-log_(e)y)=0.`
`therefore" "y=1`
Differentiating (1), w.r.t.x, we get
`(1)/(log_(e)x-log_(e)y).((1)/(x)-(1)/(y)y')`
`=e^(x^(2)//y)cdot(2xy+x^(2)y')(1-log_(e)x)-(1)/(x)e^(x^(2)y)`
Putting x = e and y = 1, we get
`(1)/(1-0)cdot((1)/(e)-y')=0-(1)/(e)cdote^(e^(2))`
`therefore" "y'(e)=(1+e^(e^(2)))/(e)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

log_(e)x-log_(e)y=a,log_(e)y-log_(e)z=b&log_(e)z-log_(e)x=c, then find the value of ((x)/(y))^(b-c)*((y)/(z))^(c-a)*((z)/(x))^(a-b)=?

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

If y=e^(1+log_(e)x) , then the value of (dy)/(dx) is equal to

if log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0 , then

If y=x^(3)log_(e)x, then find y'' andy'''.

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

Find the range of f(x)=log_(e)x-((log_(e)x)^(2))/(|log_(e)x|)

y=(log_(e)x)^(sinx)

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is