Home
Class 12
MATHS
If x = sqrt(a^(sin^(-1)t)) , y = sqrt(a...

If `x = sqrt(a^(sin^(-1)t)) , y = sqrt(a^(cos^(-1)t)` then show that,`dy/dx=-y/x.`

Text Solution

Verified by Experts

`x=sqrt(a^(sin^(-1)t)),y=sqrt(a^(cos^(-1)t))`
`"or "xcdoty=sqrt(a^(sin^(-1)t+cos^(-1)t))=sqrt(a^(pi//2))`
Differentiating w.r.t. x, we get
`x(dy)/(dx)+y=0`
`"or "(dy)/(dx)=(-y)/(x)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(a^sin^((-1)t)) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x .

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos^(-1)t)) show that (dy)/(dx)=-(y)/(x)

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos-1)t)a>0 and -1

If x=a^(sqrt(sin-1)t) and y=a^(sqrt(cos-1)t), then show that (dy)/(dx)=-(y)/(x)

If x=a^(sin^(-1))t,y=a^(cos^(-1))t, show that (dy)/(dx)=-(y)/(x)

If quad sqrt(a^(sin^(-1))t),y=sqrt(a^(cos-1)t),a>0 and |t|<1 then prove that (d^(2)y)/(dx^(2))=(2y)/(x^(2))

For t in (0,1), let x= sqrt( 2 ^(sin^(-1)(t))) and y=sqrt(2 ^(cos-1)t), then 1+ ((dy)/(dx))^(2) equals :

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If x=sqrt(2^(cosec^(-1_t))) and y=sqrt(2^(sec^(-1_t))) (|t|ge1) then (dy)/(dx) is equal to.