Home
Class 12
MATHS
Find (dy)/(dx) if x= 3 cos theta - cos 2...

Find `(dy)/(dx)` if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given \(x = 3 \cos \theta - \cos 2\theta\) and \(y = \sin \theta - \sin 2\theta\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = 3 \cos \theta - \cos 2\theta \] Using the chain rule, we differentiate \(x\): \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(3 \cos \theta) - \frac{d}{d\theta}(\cos 2\theta) \] Calculating each derivative: 1. The derivative of \(3 \cos \theta\) is \(-3 \sin \theta\). 2. The derivative of \(\cos 2\theta\) using the chain rule is \(-\sin 2\theta \cdot 2 = -2 \sin 2\theta\). Combining these results: \[ \frac{dx}{d\theta} = -3 \sin \theta + 2 \sin 2\theta \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = \sin \theta - \sin 2\theta \] Using the chain rule, we differentiate \(y\): \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(\sin \theta) - \frac{d}{d\theta}(\sin 2\theta) \] Calculating each derivative: 1. The derivative of \(\sin \theta\) is \(\cos \theta\). 2. The derivative of \(\sin 2\theta\) using the chain rule is \(\cos 2\theta \cdot 2 = 2 \cos 2\theta\). Combining these results: \[ \frac{dy}{d\theta} = \cos \theta - 2 \cos 2\theta \] ### Step 3: Find \(\frac{dy}{dx}\) To find \(\frac{dy}{dx}\), we use the formula: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\cos \theta - 2 \cos 2\theta}{-3 \sin \theta + 2 \sin 2\theta} \] ### Final Result Thus, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\cos \theta - 2 \cos 2\theta}{-3 \sin \theta + 2 \sin 2\theta} \] ---

To find \(\frac{dy}{dx}\) given \(x = 3 \cos \theta - \cos 2\theta\) and \(y = \sin \theta - \sin 2\theta\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = 3 \cos \theta - \cos 2\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

Find (dy)/(dx) , " if x " = 2 cos theta - cos 2 theta and y = 2sin theta - sin 2 theta .

Find (dy)/(dx) if x=3 cos theta- 2cos^(3)theta,y=3 sin theta -2sin^(3) theta.

Find (dy)/(dx) , if x=costheta-cos2theta , y=sintheta-sin2theta

If x=2cos theta -cos 2theta ,y=2sin theta -sin 2theta ,then (dy)/(dx) =

If x and y are connected parametrically by the equations given,without eliminating the parameter,Find (dy)/(dx)x=cos theta-cos2 theta,y=sin theta-sin2 theta

"Find "(dy)/(dx) if x =a(theta- sin theta) and y= a (1- cos theta).

Find (dy)/(dx), when x=a(cos theta+theta sin theta) and y=a(sin theta-theta cos theta)

If x = sin theta - cos theta and y = sin theta + cos theta , then (dy)/(dx) =

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =