Home
Class 12
MATHS
"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)...

`"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|.`
Find the value of f'(0).

Text Solution

Verified by Experts

The correct Answer is:
2

Since in `R_(3)`, putting x=0, all the elements are zero then
`f'(0)=0+0+|{:(1,0,-1),(0,1,0),(2 cos 0,0, 4(0)cos 0):}|=|{:(1,0,-1),(0,1,0),(2,0,0):}|=2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

f(x)=|[cos(x+x^(2)),sin(x+x^(2)),-cos(x+x^(2))sin(x-x^(2)),cos(x-x^(2)),sin(x-x^(2))sin2x,0,sin(2x^(2)). Find the value of f'(0), sin (2x^(2))

If f(x)=|[cos(x +x^2), sin(x +x^2),-cos(x+x^2)],[ sin(x-x^2), cos(x -x^2), sin(x-x^2)],[sin2x,0,sin2x^2]| then find f'(x)

((sin x+cos x)^(2))/((sin x-cos x)^(2))

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is

If f(x)=|"cos"(x+x^2)"sin"(x+x^2)-"cos"(x+x^2)"sin"(x-x^2)"cos"(x-x^2)sin(x-x^2)sin2x0sin2x^2|,t h e n f(-2)=0 (b) f^(prime)(-1/2)=0 f^(prime)(-1)=-2 (d) f^(0)=4

Let f(x)=det[[cos^(2)x,sin2x,-sin xsin2x,2sin^(2)x,cos xsin x,-cos x,0]] than

(sin x + cos x)^2 + (sin x - cos x)^2

Solve: [[cos^(2)x, sin^(2)x],[sin^(2)x, cos^(2)x]]+[[sin^(2)x, cos^(2)x],[cos^(2)x, sin^(2)x]]