Home
Class 12
MATHS
"Let "g(x)=|{:(f(x+c),f(x+2c),f(x+3c)),(...

`"Let "g(x)=|{:(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|,`
where c is constant, then find `lim_(xrarr0) (g(x))/(x).`

Text Solution

Verified by Experts

The correct Answer is:
0

`g(x)=|{:(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|`
`therefore" "g(0)=0`
`therefore" "underset(xrarr0)lim(g(x))/(x)" "((0)/(0)from)`
`=underset(xrarr0)lim(g'(x))/(1)" (using L' Hopital rule)"`
`g'(0)`
`"Now, "g'(x)|{:(f'(x+c),f'(x+2c),f'(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|`
`therefore" "g'(0)=|{:(f'(c),f'(2c),f'(2c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|=0`
`therefore" "underset(xrarr0)lim(g(x))/(x)=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If g(x)=|(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c))|, where c is a constant, then lim_(x rarr0)(g(x))/(x) is equal to

Let g(x)=|(f(x+alpha), f(x+2a), f(x+3alpha)), f(alpha), f(2alpha), f(3alpha),(f\'(alpha),(f\'(2alpha), f\'(3alpha))| , where alpha is a constant then Lt_(xrarr0(g(x))/x= (A) 0 (B) 1 (C) -1 (D) none of these

Write the value of (lim)_(x rarr c)(f(x)-f(c))/(x-c)

int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx is where C is constant of integration

If (lim)_(x rarr c)(f(x)-f(c))/(x-c) exists finitely,write the value of (lim)_(x rarr c)f(x)

Let f:RtoR:f(x)=(x)/(c) where c is a constant. (i) (cf)(x) (ii) (c^(2)f)(x) (iii) ((1)/(c)f)(x)

If f'(c)=(f (b)-f(a))/(b-a) , where f(x) =e^(x), a=0 and b=1 , then: c = ….

Let f(x)=a+b|x|+c|x|^(2) , where a,b,c are real constants. The, f'(0) exists if