Home
Class 12
MATHS
Let g: RvecR be a differentiable functio...

Let `g: RvecR` be a differentiable function satisfying `g(x)=g(y)g(x-y)AAx , y in R` and `g^(prime)(0)=aa n dg^(prime)(3)=bdot` Then find the value of `g^(prime)(-3)dot`

Text Solution

Verified by Experts

The correct Answer is:
`(a^(2))/(b)`

`g(x)=g(y)g(x-y)`
Differentiating w.r.t. x, keeping y constant,
`g'(x)=g(y)[g'(x-y)]`
Put y=x. Then,
`g'(x)=g(x)cdotg'(0)=acdotg(x)`
`"or "g(x)=ae^(x)" "[becauseg(0)=1]`
`"or "g'(x)=ae^(x),g'(3)=ae^(3)=b`
`"or "g'(-3)=ae^(-3)=(a^(2))/(b)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Single)|137 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let g:R rarr R be a differentiable function satisfying g(x)=g(y)g(x-y)AA x,y in R and g'(0)=a and g'(3)=b. Then find the value of g'(-3)

Let f be a differentiable function satisfying f(x/y)=f(x)-f(y) for all x ,\ y > 0. If f^(prime)(1)=1 then find f(x)dot

Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x) and g (0)=1 , then g(x)((2-sin2x)/(1-cos2x))dx is equal to

Let g(x) be a function satisfying g(0)=2,g(1)=3,g(x+2)=2g(x)-g(x+1), then find g(5)

Let g:R rarr R be a differentiable function satisfying g(x)=int_(0)^(x)(g(t)*cos t-cos(t-x))dt for all x in R Find number of integers in the range of g(x)

Let g:R rarr R be a differentiable function satisfying g(x)=int_(0)^(x)(g(t)*cos t-cos(t-x)) for all x in R .Find number of integers in the range of g(x)

Let g(x) be a polynomial function satisfying g(x).g(y) = g(x) + g(y) + g(xy) -2 for all x, y in R and g(1) != 1 . If g(3) = 10 then g(5) equals

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

Let g(x) be a function satisfying g(0) = 2, g(1) = 3, g(x+2) = 2g(x+1), then find g(5).