Home
Class 12
MATHS
"Prove that "lim(hrarr0) (f(x+h)+f(x-h)-...

`"Prove that "lim_(hrarr0) (f(x+h)+f(x-h)-2f(x))/(h^(2))=f''(x)" (without using L' Hospital's rule)".`

Text Solution

Verified by Experts

`f''(x)=underset(hrarr0)lim(f'(x+h)-f'(x))/(h)`
`=underset(hrarr0)lim(underset(krarr0)lim[(f(x+h+k)-f(x+h))/(k)-(f(x+k)-f(x))/(k)])/(h)`
Let `k=-h.` Then.
`f''(x)=-underset(hrarr0)lim(f(x)-f(x+h)-f(x-h)+f(x))/(h^(2))`
`=underset(hrarr0)lim(f(x+h)+f(x-h)-2f(x))/(h^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Single)|137 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Prove that lim_(x rarr0)(f(x+h)+f(x-h)-2f(x))/(h^(2))=f^(x) (without using Ll'Hospital srule).

Evaluate: lim_(n rarr0)(2^(x)-1-x)/(x^(2)), without using LHospitals rule and expansion f the series.

int[lim_(hrarr0)(sec(x+h)-secx)/(h)]dx=

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

D*f(x)=lim_(h rarr0)(f^(2)(x+h)-f^(2)(x))/(h) If f(x)=x ln x then D*f(x) at x=e equals

the value of lim_(h to 0) (f(x+h)+f(x-h))/h is equal to

if quad f(x)=ax^(2)+bx+c, showthat lim_(h rarr0)(f(x+h)-f(x))/(h)=2ax+b

Let the derivative of f(x) be defined as D*f(x)=lim_(h rarr0)(f^(2)(x+h)-f^(2)(x))/(h) where f^(2)(x)=(f(x))^(2) if u=f(x),v=g(x), then the value of D*{u.v} is