Home
Class 12
MATHS
A function f, defined for all positive r...

A function `f,` defined for all positive real numbers, satisfies the equation `f(x^2)=x^3` for every `x >0` . Then the value of `f^(prime)(4)` is 12 (b) 3 (c) `3//2` (d) cannot be determined

A

12

B

3

C

`3//2`

D

cannot be determined

Text Solution

Verified by Experts

`2xf'(x^(2))=3x^(2)or 4f'(4)=12 or f'(4)=3.`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Comprehension)|23 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

A function f, defined for all positive real numbers, satisfies the equation f(x^(2))=x^(3)=x^(3) for every gt0. Then the value of f'(4) is

A function f, defined for all positive real numbers,satisfies the equation f(x^(2))=x^(3) for every x>0. Then the value of f'(4) is (a) 12(b)3(c)3/2(d) cannot be determined

If a differentiable function f defined for x gt0 satisfies the relation f(x^(2))=x^(3),x gt 0 , then what is the value of f'(4)?

The function f satisfies the functional equation 3f(x)+2f((x+59)/(x-1))=10x+30 for all real x!=1. The value of f(7)is8(b)4(c)-8 (d) 11

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is

Let f(x) be a continuous function defined from [0,2]rarr R and satisfying the equation int_(0)^(2)f(x)(x-f(x))dx=(2)/(3) then the value of 2f(1)

The function fis not defined for =0, but for all non zero real number x,f(x)+2f((1)/(x))=3x. The equation f(x)=f(-x) is satisfied by

A differentiable function satisfies 3f^(2)(x)f'(x)=2x. Given f(2)=1 then the value of f(3) is

Let f be a function satisfying the functional equation f(x)+2f((2x+1)/(x-2))=3x,x!=2 then find the value of |(f(3))/(f(7))|

CENGAGE-DIFFERENTIATION-Exercise (Single)
  1. if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

    Text Solution

    |

  2. If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e ...

    Text Solution

    |

  3. A function f, defined for all positive real numbers, satisfies the equ...

    Text Solution

    |

  4. Let f : (-5,5)rarrR be a differentiable function of with f(4) = 1, f'(...

    Text Solution

    |

  5. The function f(x)=e^x+x , being differentiable and one-to-one, has a d...

    Text Solution

    |

  6. If f(x) = x + tan x and f is the inverse of g, then g'(x) is equal to

    Text Solution

    |

  7. If f(x)=x^(3)+3x+4 and g is the inverse function of f(x), then the val...

    Text Solution

    |

  8. If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to x+y...

    Text Solution

    |

  9. " If "y=sqrt(logx+sqrt(logx+sqrt(logx+...oo)))," then "(dy)/(dx) is

    Text Solution

    |

  10. d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]= 1/(2(1+x)sqrt(x)) (b) 3/((1+...

    Text Solution

    |

  11. Suppose the function f(x)-f(2x) has the derivative 5 at x=1 and deriva...

    Text Solution

    |

  12. If ysqrt(x^2+1)=log(sqrt(x^2+)1-x),s howt h a t(x^2+1)(dy)/(dx)+x y+1=...

    Text Solution

    |

  13. "Let "e^(y)=(sqrt(1+alpha)+sqrt(1-alpha))/(sqrt(1+alpha)-sqrt(1-alpha)...

    Text Solution

    |

  14. The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)...

    Text Solution

    |

  15. If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))(1,0) is equal to

    Text Solution

    |

  16. If y=(x^x)^x then (dy)/(dx) is

    Text Solution

    |

  17. The first derivative of the function [cos^(-1)(sin sqrt((1+x)/2))+x^x]...

    Text Solution

    |

  18. f(x)=x^x , x in (0,oo) and let g(x) be inverse of f(x) , then g(x)'...

    Text Solution

    |

  19. If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b...

    Text Solution

    |

  20. If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b...

    Text Solution

    |