Home
Class 12
MATHS
f(x)=x^x , x in (0,oo) and let g(x) be...

`f(x)=x^x , x in (0,oo)` and let ` g(x)` be inverse of f(x) , then `g(x)'` must be

A

`x(1+log x)`

B

`x(1+ log (x))`

C

`(1)/(x(1+log g(x))`

D

non-existent

Text Solution

Verified by Experts

`f(x)=x^(x),g(x)" is inverse of "f(x)`
`therefore" "f(g(x))=x`
`rArr" "f'(g(x))cdotg'(x)=1`
`rArr" "g'(x)=(1)/(f'(g(x)))`
`"Now "log_(e)f(x)=xlog_(e)x`
`therefore" "(f'(x))/(f(x))=x(1)/(x)+log_(e)x=1+log_(e)x`
`therefore" "f'(x)=x^(x)(1+log_(e)x)`
`therefore" "f'(g(x))=(g(x))^(g(x))(1+log g(x))`
`"Now "f(g(x))=g(x)^(g(x))=x`
`therefore" "f'(g(x))=x(1+log g(x))`
`therefore" "g'(x)=(1)/(x(1+log g(x)))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Comprehension)|23 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

if f(x)=x^(2)x,x in (1,infty) and g(x) be inverse function of f(x) then g^(')(x) must be equal to

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

Consider a function f(x)=x^(x), AA x in [1, oo) . If g(x) is the inverse function of f(x) , then the value of g'(4) is equal to

If f(x) = x + tan x and g(x) is the inverse of f(x), then g'(x) is equal to

Let (x)=x+(x^(3))/(3)+(x^(5))/(5)+(x^(7))/(7)+(x^(9))/(9) and let g(x) be the inverse of f(x) then g'''(0) is

If f(x)=x+tanx and g(x) is inverse of f(x) then g^(')(x) is equal to

Let f(x)=log_(e)x+2x^(3)+3x^(5), where x>0 and g(x) is the inverse function of f(x) , then g'(5) is equal to:

Let f(x)=exp(x^(3)+x^(2)+x) for any real number and let g(x) be the inverse function of f(x) then g'(e^(3))

If f(x)=2x+tan x and g(x) is the inverse of f(x) then value of g'((pi)/(2)+1) is

CENGAGE-DIFFERENTIATION-Exercise (Single)
  1. If y=(x^x)^x then (dy)/(dx) is

    Text Solution

    |

  2. The first derivative of the function [cos^(-1)(sin sqrt((1+x)/2))+x^x]...

    Text Solution

    |

  3. f(x)=x^x , x in (0,oo) and let g(x) be inverse of f(x) , then g(x)'...

    Text Solution

    |

  4. If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b...

    Text Solution

    |

  5. If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b...

    Text Solution

    |

  6. Suppose f(x)=e^(ax) + e^(bx), where a!=b, and that fprimeprime(x)-2fpr...

    Text Solution

    |

  7. (d^(20)y)/(dx^(20))(2cosxcos3x)i se q u a lto 2^(20)(cos2x-2^(20)os3x...

    Text Solution

    |

  8. (d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) (n !)/(x^n) ((n-2)!)/(x^n) (d...

    Text Solution

    |

  9. The n t h derivative of the function f(x)=1/(1-x^2)[w h e r ex in (-1,...

    Text Solution

    |

  10. If y=xlog"{"x/((a+b x))"]" , then show that x^3(d^2y)/(dx^2)=(x(dy)/(d...

    Text Solution

    |

  11. If a x^2+2h x y+b y^2=1,t h e n(d^(2y))/(dx^2) is (h^2-a b)/((h x+b y)...

    Text Solution

    |

  12. "If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y(2)+xy(1) is (where ...

    Text Solution

    |

  13. If (sinx)(cosy)=1/2,t h e n(d^2y)/(dx^2)a t(pi/4,pi/4) is -4 (b) -2 (c...

    Text Solution

    |

  14. A function f satisfies the condition f(x)=f^(prime)(x)+f^(x)+f^(x) ,w ...

    Text Solution

    |

  15. Let f(x) be a polynomial of degree 3 such that f(3)=1,f^(prime)(3)=-1,...

    Text Solution

    |

  16. If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is (a) a constant (b) a fun...

    Text Solution

    |

  17. If y=sinx+e^x ,t h e n(d^(2x))/(dy^2)= (-sinx+e^x)^(-1) (sinx-e^x)/(...

    Text Solution

    |

  18. If y= sin px and y(n) is the n^(th) derivative of y, then |{:(y,y(1)...

    Text Solution

    |

  19. If f^(x)=-f(x)a n dg(x)=f^(prime)(x)a n d F(x)=(f(x/2))^2+(g(x/2))^2 ...

    Text Solution

    |

  20. Let y=1n(1+cosx)^2 . Then the value of (d^2y)/(dx^2)+2/(e^(y/2)) equal...

    Text Solution

    |