Home
Class 12
MATHS
Which of the following inequalities is/a...

Which of the following inequalities is/are TRUE ?

A

`overset(1) underset(0)int x cos x dx ge (3)/(8)`

B

`overset(1) underset(0)int x sin x dx ge (3)/(10)`

C

`overset(1) underset(0)int x^(2) cos x dx ge (1)/(2)`

D

`overset(1) underset(0)int x^(2) sin x dx ge (2)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequalities given in the question, we will analyze each option step by step. ### Step 1: Analyze Option A We need to check if: \[ \int_0^1 x \cos x \, dx \geq \frac{3}{8} \] **Solution:** Using integration by parts, let: - \( u = x \) → \( du = dx \) - \( dv = \cos x \, dx \) → \( v = \sin x \) Now, applying integration by parts: \[ \int x \cos x \, dx = x \sin x - \int \sin x \, dx \] \[ = x \sin x + \cos x \] Evaluating from 0 to 1: \[ \int_0^1 x \cos x \, dx = \left[ x \sin x + \cos x \right]_0^1 \] \[ = (1 \cdot \sin 1 + \cos 1) - (0 + 1) \] \[ = \sin 1 + \cos 1 - 1 \] Using numerical values, \( \sin 1 \approx 0.8415 \) and \( \cos 1 \approx 0.5403 \): \[ \sin 1 + \cos 1 - 1 \approx 0.8415 + 0.5403 - 1 \approx 0.3818 \] Since \( 0.3818 \geq \frac{3}{8} \approx 0.375 \), option A is **TRUE**. ### Step 2: Analyze Option B We need to check if: \[ \int_0^1 x \sin x \, dx \geq \frac{3}{10} \] **Solution:** Using integration by parts again: - \( u = x \) → \( du = dx \) - \( dv = \sin x \, dx \) → \( v = -\cos x \) Now, applying integration by parts: \[ \int x \sin x \, dx = -x \cos x + \int \cos x \, dx \] \[ = -x \cos x + \sin x \] Evaluating from 0 to 1: \[ \int_0^1 x \sin x \, dx = \left[ -x \cos x + \sin x \right]_0^1 \] \[ = (-1 \cdot \cos 1 + \sin 1) - (0 + 0) \] \[ = -\cos 1 + \sin 1 \] Using numerical values: \[ -\cos 1 + \sin 1 \approx -0.5403 + 0.8415 \approx 0.3012 \] Since \( 0.3012 \geq \frac{3}{10} = 0.3 \), option B is **TRUE**. ### Step 3: Analyze Option C We need to check if: \[ \int_0^1 x^2 \cos x \, dx \geq \frac{1}{2} \] **Solution:** Using integration by parts: - Let \( u = x^2 \) → \( du = 2x \, dx \) - \( dv = \cos x \, dx \) → \( v = \sin x \) Then: \[ \int x^2 \cos x \, dx = x^2 \sin x - \int 2x \sin x \, dx \] Now we need to evaluate \( \int 2x \sin x \, dx \) using integration by parts again: - Let \( u = 2x \) → \( du = 2 \, dx \) - \( dv = \sin x \, dx \) → \( v = -\cos x \) So: \[ \int 2x \sin x \, dx = -2x \cos x + 2 \int \cos x \, dx \] \[ = -2x \cos x + 2 \sin x \] Now substituting back: \[ \int_0^1 x^2 \cos x \, dx = \left[ x^2 \sin x \right]_0^1 - \left[ -2x \cos x + 2 \sin x \right]_0^1 \] Calculating the limits: \[ = (1 \cdot \sin 1) - (0) - \left[ -2 \cdot 1 \cdot \cos 1 + 2 \cdot \sin 1 \right] \] \[ = \sin 1 - (-2 \cos 1 + 2 \sin 1) = \sin 1 + 2 \cos 1 - 2 \sin 1 \] \[ = 2 \cos 1 - \sin 1 \] Using numerical values: \[ 2 \cdot 0.5403 - 0.8415 \approx 1.0806 - 0.8415 \approx 0.2391 \] Since \( 0.2391 < \frac{1}{2} = 0.5 \), option C is **FALSE**. ### Step 4: Analyze Option D We need to check if: \[ \int_0^1 x^2 \sin x \, dx \geq \frac{2}{9} \] **Solution:** Using integration by parts: - Let \( u = x^2 \) → \( du = 2x \, dx \) - \( dv = \sin x \, dx \) → \( v = -\cos x \) Then: \[ \int x^2 \sin x \, dx = -x^2 \cos x + \int 2x \cos x \, dx \] Now we need to evaluate \( \int 2x \cos x \, dx \) using integration by parts again: - Let \( u = 2x \) → \( du = 2 \, dx \) - \( dv = \cos x \, dx \) → \( v = \sin x \) So: \[ \int 2x \cos x \, dx = 2x \sin x - 2 \int \sin x \, dx \] \[ = 2x \sin x + 2 \cos x \] Now substituting back: \[ \int_0^1 x^2 \sin x \, dx = \left[ -x^2 \cos x \right]_0^1 + \left[ 2x \sin x + 2 \cos x \right]_0^1 \] Calculating the limits: \[ = -1 \cdot \cos 1 + (2 \cdot 1 \cdot \sin 1 + 2 \cdot \cos 1) - (0 + 2) \] \[ = -\cos 1 + (2 \sin 1 + 2 \cos 1) - 2 \] \[ = 2 \sin 1 + \cos 1 - 2 \] Using numerical values: \[ = 2 \cdot 0.8415 + 0.5403 - 2 \approx 1.683 - 2 \approx -0.317 \] Since \( -0.317 < \frac{2}{9} \approx 0.222 \), option D is **FALSE**. ### Final Conclusion The true inequalities are: - **Option A: TRUE** - **Option B: TRUE** - **Option C: FALSE** - **Option D: FALSE**
Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE ADVANCED

    JEE ADVANCED PREVIOUS YEAR|Exercise MATHS|36 Videos

Similar Questions

Explore conceptually related problems

The intensity distribution of X - rays from two Coolidge tubes operated on different voltages V_(1) and V_(2) and using is shown in the figure . Which one of the following inequalities is true ?

If z s a complex number such that -(pi)/(2)<=argz<=(pi)/(2), then which of the following inequality is true