Home
Class 12
MATHS
The value of the limit lim(x to pi/...

The value of the limit
`lim_(x to pi/2) (4sqrt2)(sin3x +sinx)/((2 sin 2x sin. (3x)/2 +cos. (5x)/2)-(sqrt(2)+sqrt(2)cos 2x +cos. (3x)/2))`
is _______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \frac{\pi}{2}} \frac{4\sqrt{2}(\sin 3x + \sin x)}{(2 \sin 2x \sin \frac{3x}{2} + \cos \frac{5x}{2}) - (\sqrt{2} + \sqrt{2} \cos 2x + \cos \frac{3x}{2})} \] we will follow these steps: ### Step 1: Evaluate the numerator First, we evaluate the numerator as \( x \to \frac{\pi}{2} \): \[ \sin 3x + \sin x \to \sin(3 \cdot \frac{\pi}{2}) + \sin(\frac{\pi}{2}) = \sin(\frac{3\pi}{2}) + 1 = -1 + 1 = 0 \] Thus, the numerator approaches \( 0 \). ### Step 2: Evaluate the denominator Next, we evaluate the denominator: \[ 2 \sin 2x \sin \frac{3x}{2} + \cos \frac{5x}{2} - (\sqrt{2} + \sqrt{2} \cos 2x + \cos \frac{3x}{2}) \] Calculating each term as \( x \to \frac{\pi}{2} \): - \( \sin 2x \to \sin(\pi) = 0 \) - \( \sin \frac{3x}{2} \to \sin(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2} \) - \( \cos \frac{5x}{2} \to \cos(\frac{5\pi}{4}) = -\frac{\sqrt{2}}{2} \) - \( \cos 2x \to \cos(\pi) = -1 \) - \( \cos \frac{3x}{2} \to \cos(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2} \) Substituting these values into the denominator: \[ 2(0)(\frac{\sqrt{2}}{2}) + (-\frac{\sqrt{2}}{2}) - (\sqrt{2} + \sqrt{2}(-1) - \frac{\sqrt{2}}{2}) \] \[ = 0 - \frac{\sqrt{2}}{2} - (\sqrt{2} - \sqrt{2} + \frac{\sqrt{2}}{2}) = -\frac{\sqrt{2}}{2} - 0 = -\frac{\sqrt{2}}{2} \] ### Step 3: Form the limit Now we have: \[ \lim_{x \to \frac{\pi}{2}} \frac{4\sqrt{2} \cdot 0}{-\frac{\sqrt{2}}{2}} = \frac{0}{-\frac{\sqrt{2}}{2}} = 0 \] ### Conclusion Thus, the value of the limit is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos

Similar Questions

Explore conceptually related problems

The value of the limit lim_(x rarr(pi)/(2))((4sqrt(2)(sin3x+sin x))/((2sin2x sin(3x/2)+cos(5x/2))-(sqrt(2)+sqrt(2)cos2x+cos(3x/2))))=

sqrt(sin 2x) cos 2x

Evaluate the limit: lim_(x rarr0)(sqrt(2)-sqrt(1+cos x))/(sin^(2)x)

Solve 2sqrt(2)cos x+sin x=3

f (x) = cos ((pi) / (sqrt (3)) sin x + sqrt ((2) / (3)) pi cos x)

2sin^(2)x+sqrt(3)cos x+1=0

lim_(x rarr(pi)/(2))(sqrt(2)-sqrt(1+sin x))/(cos^(2)x)

lim_(x rarr pi)(sqrt(1-cos x)-sqrt(2))/(sin^(2)x)