Home
Class 12
MATHS
Let a and b be positive real numbers . ...

Let a and b be positive real numbers . Suppose `vec(PQ) = a hat(i) + b hat(j) and vec(PS) = a hat(i) - b hat(j) ` are adjacent sides of a parallelofram PQRS . Let `vec(u) and vec(v) ` be the vectors of `vec(w) = hat(i) + hat(j) ` along `vec(PQ) and vec(PS)` respectively . If `|vec(u)| + |vec(v)| = |vec(w)|` and if the area of the parallelogram PQRS is 8 , then which of the following statements is/are TRUE ?

A

`a+b=4`

B

`a-b=2`

C

The length of the diagonal P R of the parallelogram PQRS is 4

D

`vec(w)` is an angle of the vectors ` vec(PQ) and vec(PS)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Define the vectors Given: - \(\vec{PQ} = a \hat{i} + b \hat{j}\) - \(\vec{PS} = a \hat{i} - b \hat{j}\) ### Step 2: Find the area of the parallelogram The area \(A\) of the parallelogram formed by vectors \(\vec{PQ}\) and \(\vec{PS}\) can be calculated using the cross product: \[ A = |\vec{PQ} \times \vec{PS}| \] Calculating the cross product: \[ \vec{PQ} \times \vec{PS} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & 0 \\ a & -b & 0 \end{vmatrix} \] Expanding this determinant: \[ = \hat{k} \left( a(-b) - b(a) \right) = \hat{k}(-ab - ab) = -2ab \hat{k} \] Thus, the area is: \[ A = | -2ab | = 2ab \] Given that the area is 8: \[ 2ab = 8 \implies ab = 4 \] ### Step 3: Find the projections Let \(\vec{w} = \hat{i} + \hat{j}\). The unit vector along \(\vec{PQ}\) is: \[ \hat{u} = \frac{\vec{PQ}}{|\vec{PQ}|} = \frac{a \hat{i} + b \hat{j}}{\sqrt{a^2 + b^2}} \] The projection of \(\vec{w}\) onto \(\vec{PQ}\) is: \[ \vec{u} = \left( \vec{w} \cdot \hat{u} \right) \hat{u} = \left( \frac{1}{\sqrt{2}} \cdot \frac{a + b}{\sqrt{a^2 + b^2}} \right) \hat{u} \] Similarly, the unit vector along \(\vec{PS}\) is: \[ \hat{v} = \frac{\vec{PS}}{|\vec{PS}|} = \frac{a \hat{i} - b \hat{j}}{\sqrt{a^2 + b^2}} \] The projection of \(\vec{w}\) onto \(\vec{PS}\) is: \[ \vec{v} = \left( \vec{w} \cdot \hat{v} \right) \hat{v} = \left( \frac{1}{\sqrt{2}} \cdot \frac{a - b}{\sqrt{a^2 + b^2}} \right) \hat{v} \] ### Step 4: Use the given condition We know that: \[ |\vec{u}| + |\vec{v}| = |\vec{w}| \] Calculating the magnitudes: \[ |\vec{w}| = \sqrt{1^2 + 1^2} = \sqrt{2} \] Thus: \[ |\vec{u}| + |\vec{v}| = \sqrt{2} \] ### Step 5: Solve the equations From the previous steps, we have: \[ \frac{a + b}{\sqrt{a^2 + b^2}} + \frac{a - b}{\sqrt{a^2 + b^2}} = \sqrt{2} \] This simplifies to: \[ \frac{2a}{\sqrt{a^2 + b^2}} = \sqrt{2} \] Squaring both sides: \[ \frac{4a^2}{a^2 + b^2} = 2 \implies 4a^2 = 2(a^2 + b^2) \implies 2a^2 = 2b^2 \implies a^2 = b^2 \] Since \(a\) and \(b\) are positive, we have \(a = b\). ### Step 6: Find the values of \(a\) and \(b\) From \(ab = 4\) and \(a = b\): \[ a^2 = 4 \implies a = 2, b = 2 \] ### Step 7: Check the statements 1. \(a + b = 4\) (True) 2. \(a - b = 0\) (True) 3. Length of diagonal \(PR = 4\) (True) 4. \(w\) is an angle bisector (False) ### Conclusion The true statements are: - \(a + b = 4\) - \(a - b = 0\) - Length of diagonal \(PR = 4\)
Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos

Similar Questions

Explore conceptually related problems

If vec(A) = 3 hat(i) - 4 hat(j) and vec(B) = 2 hat(i) + 16 hat(j) then the magnitude and direction of vec(A) + vec(B) will be

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(A)=2hat(i)+hat(j) and vec(B)=hat(i)-hat(j) , sketch vector graphically and find the component of vec(A) along vec(B) and perpendicular to vec(B)

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(a) = (hat(i) - 2 hat(j)+ 3 hat(k)) and vec(b) = (2 hat(i) + 3 hat(j)- 5 hat(k)) then find (vec(a) xx vec(b)) and " verify that " (vec(a) xx vec(b)) is perpendicular to each one of vec(a) and vec(b) .

Let vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j) and vec(w) = hat(i) + 2hat(j) + 3hat(k) . If hat(n) is a unit vector such that vec(u).vec(n) = 0 and vec(v).hat(n) = 0 then |vec(w).hat(n)| is equal to.

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals