Home
Class 12
MATHS
Let the functions f: [0,1] to R be d...

Let the functions `f: [0,1] to R ` be defined by
`f(x) = (4^(x))/(4^(x)+2)` Then the value of
`f(1/40)+f(2/20) +f(3/40) +....+ (39/40) - f(1/2)` is _______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ f\left(\frac{1}{40}\right) + f\left(\frac{2}{40}\right) + f\left(\frac{3}{40}\right) + \ldots + f\left(\frac{39}{40}\right) - f\left(\frac{1}{2}\right) \] where the function \( f(x) \) is defined as: \[ f(x) = \frac{4^x}{4^x + 2} \] ### Step 1: Find \( f(1 - x) \) First, we calculate \( f(1 - x) \): \[ f(1 - x) = \frac{4^{1 - x}}{4^{1 - x} + 2} \] This can be rewritten as: \[ f(1 - x) = \frac{4 \cdot 4^{-x}}{4 \cdot 4^{-x} + 2} = \frac{4 \cdot 4^{-x}}{2(2 + 4^{-x})} = \frac{2 \cdot 4^{-x}}{2 + 4^{-x}} \] ### Step 2: Simplify \( f(x) + f(1 - x) \) Now, we will add \( f(x) \) and \( f(1 - x) \): \[ f(x) + f(1 - x) = \frac{4^x}{4^x + 2} + \frac{4^{1 - x}}{4^{1 - x} + 2} \] Substituting \( f(1 - x) \): \[ = \frac{4^x}{4^x + 2} + \frac{4 \cdot 4^{-x}}{4 \cdot 4^{-x} + 2} \] ### Step 3: Find a common denominator The common denominator is \( (4^x + 2)(4 \cdot 4^{-x} + 2) \): \[ = \frac{4^x(4 \cdot 4^{-x} + 2) + 4 \cdot 4^{-x}(4^x + 2)}{(4^x + 2)(4 \cdot 4^{-x} + 2)} \] ### Step 4: Simplify the numerator Expanding the numerator: \[ = \frac{4 + 2 \cdot 4^x + 4 + 2 \cdot 4^{-x}}{(4^x + 2)(4 \cdot 4^{-x} + 2)} = \frac{4 + 2 \cdot (4^x + 4^{-x})}{(4^x + 2)(4 \cdot 4^{-x} + 2)} \] ### Step 5: Show that \( f(x) + f(1 - x) = 1 \) We can see that the numerator simplifies to \( 4 + 2 \cdot (4^x + 4^{-x}) \) and the denominator simplifies to \( 4^x + 2 + 2 + 4^{-x} = 4 + 2 + 4^{-x} + 2 = 4 + 2 = 6 \). Thus, we conclude that: \[ f(x) + f(1 - x) = 1 \] ### Step 6: Pairing terms Now, we can pair the terms in the original sum: \[ f\left(\frac{k}{40}\right) + f\left(\frac{40 - k}{40}\right) = 1 \] for \( k = 1, 2, \ldots, 19 \). Each pair sums to 1, and there are 19 pairs: \[ f\left(\frac{1}{40}\right) + f\left(\frac{39}{40}\right) = 1 \] \[ f\left(\frac{2}{40}\right) + f\left(\frac{38}{40}\right) = 1 \] \[ \ldots \] \[ f\left(\frac{19}{40}\right) + f\left(\frac{21}{40}\right) = 1 \] ### Step 7: Calculate the total Thus, we have 19 pairs contributing 19 to the sum: \[ f\left(\frac{1}{40}\right) + f\left(\frac{2}{40}\right) + \ldots + f\left(\frac{39}{40}\right) = 19 \] Now we subtract \( f\left(\frac{1}{2}\right) \): \[ f\left(\frac{1}{2}\right) = \frac{4^{1/2}}{4^{1/2} + 2} = \frac{2}{2 + 2} = \frac{2}{4} = \frac{1}{2} \] ### Final Calculation Thus, the final value is: \[ 19 - \frac{1}{2} = 19 - 0.5 = 18.5 \] ### Final Answer The value of the expression is: \[ \boxed{18.5} \]
Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 2|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos

Similar Questions

Explore conceptually related problems

Let the function f:R rarr R be defined by f(x)=tan(cot^(-1)(2^(x))-(pi)/(4)) then

Let the function f be defined by f(x)=((2x+1)/(1-3x)) then f^(-1)(x) is

If the function f:R rarr R defined by f(x)=(4^(x))/(4^(x)+2) then show that f(1-x)=1-f(x) and hence deduce the value of f( 1/ 4 )+2f( 1 /2 )+f( 3/4 ) .

Let f:R to R be defined by f(x)=3x-4. Then, f^(-1) (x) is

Let f:R rarr R be defined as f(x)=(x^(2)-x+4)/(x^(2)+x+4). Then the range of the function f(x) is

A function f :Rto R is defined as f (x) =3x ^(2) +1. then f ^(-1)(x) is :

Let f:R to R be a function defined by f(x)=(|x|^(3)+|x|)/(1+x^(2)) , then the graph of f(x) lies in the

f:R rarr R is given by f(x)=(a^(x))/(a^(x)+sqrt(a))AA x in R , then f((1)/(40))+f((2)/(40))+......+f((39)/(40))-f((1)/(2))=

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be: