Home
Class 12
MATHS
Let the function f : (0, pi) to RR be ...

Let the function `f : (0, pi) to RR ` be defined by ` f(theta = (sin theta + cos theta)^(2) +(sin theta - cos theta)^(4)` Suppose the function f has a local minimum at `theta` precisely when ` theta in { lambda_(1),pi,....,lambda_(r )pi}` , where `0 lt lambda_(1) lt ....lt lambda_(r ) lt 1 . ` Then the value of `lambda_(1)+....+lambda_(r ) ` is _______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(\theta) = (\sin \theta + \cos \theta)^2 + (\sin \theta - \cos \theta)^4 \) and find the conditions under which it has local minima. ### Step 1: Simplify the function \( f(\theta) \) We start by expanding the terms in the function: 1. **First term**: \[ (\sin \theta + \cos \theta)^2 = \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta = 1 + \sin(2\theta) \] 2. **Second term**: \[ (\sin \theta - \cos \theta)^4 = (\sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta)^2 = (1 - 2\sin \theta \cos \theta)^2 = (1 - \sin(2\theta))^2 \] Expanding this gives: \[ 1 - 2\sin(2\theta) + \sin^2(2\theta) \] Combining both terms, we have: \[ f(\theta) = (1 + \sin(2\theta)) + (1 - 2\sin(2\theta) + \sin^2(2\theta)) = 2 - \sin(2\theta) + \sin^2(2\theta) \] ### Step 2: Find the derivative \( f'(\theta) \) To find local minima, we need to compute the derivative of \( f(\theta) \): \[ f'(\theta) = \frac{d}{d\theta}(2 - \sin(2\theta) + \sin^2(2\theta)) \] Using the chain rule: \[ f'(\theta) = -2\cos(2\theta) + 2\sin(2\theta)\cos(2\theta) = 2\cos(2\theta)(\sin(2\theta) - 1) \] ### Step 3: Set the derivative to zero Setting \( f'(\theta) = 0 \): \[ 2\cos(2\theta)(\sin(2\theta) - 1) = 0 \] This gives us two cases to consider: 1. \( \cos(2\theta) = 0 \) 2. \( \sin(2\theta) - 1 = 0 \) ### Step 4: Solve for \( \theta \) 1. **From \( \cos(2\theta) = 0 \)**: \[ 2\theta = \frac{\pi}{2} + n\pi \quad \Rightarrow \quad \theta = \frac{\pi}{4} + \frac{n\pi}{2} \] In the interval \( (0, \pi) \), valid values are \( \frac{\pi}{4} \) and \( \frac{3\pi}{4} \). 2. **From \( \sin(2\theta) = 1 \)**: \[ 2\theta = \frac{\pi}{2} + 2k\pi \quad \Rightarrow \quad \theta = \frac{\pi}{4} + k\pi \] The only valid solution in \( (0, \pi) \) is \( \frac{\pi}{4} \). ### Step 5: Identify \( \lambda_1, \lambda_2, \ldots, \lambda_r \) From the solutions, we have: - \( \theta = \frac{\pi}{4} \) corresponds to \( \lambda_1 = \frac{1}{4} \) - \( \theta = \frac{3\pi}{4} \) corresponds to \( \lambda_2 = \frac{3}{4} \) ### Step 6: Calculate \( \lambda_1 + \lambda_2 \) Now we sum the values of \( \lambda_1 \) and \( \lambda_2 \): \[ \lambda_1 + \lambda_2 = \frac{1}{4} + \frac{3}{4} = 1 \] ### Final Answer Thus, the value of \( \lambda_1 + \lambda_2 \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 2|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos

Similar Questions

Explore conceptually related problems

If 0lt theta lt 90^(@) , the (sin theta+cos theta) is :

If 3 sin 2 theta = 2 sin 3 theta and 0 lt theta lt pi , then sin theta =

If : 0 lt theta lt pi/2 and sin 7theta + sin 4 theta + sin theta=0 , then : theta =

If z = (1+cos theta + i sin theta)/(sin theta + i(1+cos theta))(0 lt theta lt pi//2) then |z| equals

If 0 lt theta lt (pi)/(4) , then what is sqrt(1-2 sin theta cos theta) equal to ?

For -pi/2 lt theta lt pi/2, (sintheta + sin 2theta)/(1+costheta + cos2theta) lies in the interval

If sin^(6) theta + cos^(6) theta -1 = lambda sin^(2) theta cos^(2) theta then the value of lambda is

If (cos theta)/(1- sin theta) + (cos theta)/(1 + sin theta) =4 , then find the value of cos theta . Find theta if 0^(@) lt theta lt 90^(@)

if (cos theta)/(1-sin theta)+ (cos theta)/(1 + sin theta) = 4 , 0^@ lt theta lt 90^@ then what is the value of (sec theta + cosec theta + cot theta)?