Home
Class 12
MATHS
If f(x)=x|x|, then prove that f^(prime)(...

If `f(x)=x|x|,` then prove that `f^(prime)(x)=2|x|`

Text Solution

Verified by Experts

`f(x)=x|x|, ne 0`
`rArr" "f(x)={:{(-x^(2), x lt 0),(x^(2), x gt 0):}`
`rArr" "f'(x)={:{(-2"x,","" x lt 0),(2"x,",""x gt 0):}`
`therefore" "f'(x)=2|x|, x ne 0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x|x|, then prove that f'(x)=2|x|

If f (x) = cot x, then prove that : f(-x)=-f(x)

If (x)=tan x , the prove that :f(x)+f(-x)=0

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

If f(x)=(1)/(1-x) , then prove that : f[f{f(x)}]=x

If f(x)=x-(1)/(x) then prove that f(x)=-f((1)/(x))

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

A function f:R rarr R satisfies the equation f(x+y)=f(x)f(y) for allx,y in R and f(x)!=0 for all x in R .If f(x) is differentiable at x=0 .If f(x)=2, then prove that f'(x)=2f(x) .

If f(x)=log_(e)x, then prove that :f(xyz)=f(x)+f(y)+f(z)