Home
Class 12
MATHS
Find (dy)/(dx)" for "y=sin^(-1) (cos x),...

Find `(dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).`

Text Solution

Verified by Experts

We have,
`sin^(-1)(cos x)=(pi)/(2)-cos^(-1)(cos x)`
`={:{((pi)/(2)-"x,"," "if 0ltxltpi),((pi)/(2)-(2pi-x)","," "if piltxlt2pi):}`
`={:{((pi)/(2)-"x,"," "if 0ltxltpi),(x-(3pi)/(2)-(2pi-x)","," "if piltxlt2pi):}`
`therefore" "(d)/(dx){sin^(-1)(cos x)}={:{(-1","," "if 0ltxltpi),(1","," "if piltxlt2pi):}`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y=sin^(-1)(cos x), where x in(0,2 pi)

Find (dy)/(dx) for y=tan^(-1){(1-cos x)/(sin x)},-pi

If (dy)/(dx) + (4)/(cos^2 x) y = (1)/(cos^2 x) , x in ((-pi)/(3) , pi/3) " and " y (pi/6) = 4/3 " then " y (- pi/6) equals ,

Find quad (dy)/(dx) if y=12(1-cos t),x=10(t-sin t),-(pi)/(2)

Let y = y (x) be the solution of the differential equation cos x (dy)/(dx) + 2y sin x = sin 2x , x in (0, pi/2) . If y(pi//3) = 0, " then " y(pi//4) is equal to :

If y=sin^(-1)(sin x), then (dy)/(dx) at x=(pi)/(2) is

Find (dy)/(dx) at x=1,y=(pi)/(4) if sin^(2)y+cos xy=k

Let y=g(x) be the solution of the differential equation (sin(dy))/(dx)+y cos x=4x,x in(0,pi) If y(pi/2)=0,theny(pi/6)^(*) is equal to

If (pi)/(2)<=x<=(3 pi)/(2) and y=sin^(-1)(sin x), find (dy)/(dx)

int_ (0) ^ ((pi) / (2)) (sin x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (cos x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (dx) / (1 + cot x) = int_ (0) ^ ((pi) / (2)) (dx) / ( 1 + time x) = (pi) / (4)