Home
Class 12
MATHS
"Find "(dy)/(dx)" for "y=sin(x^(2)+1)....

`"Find "(dy)/(dx)" for "y=sin(x^(2)+1).`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the function \(y = \sin(x^2 + 1)\), we will use the chain rule of differentiation. Here’s a step-by-step solution: ### Step 1: Identify the outer and inner functions In the function \(y = \sin(x^2 + 1)\), we can identify: - The outer function: \(u = \sin(v)\) where \(v = x^2 + 1\) - The inner function: \(v = x^2 + 1\) ### Step 2: Differentiate the outer function ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) ,if y=sin(x^(2))

Find (dy)/(dx) if y=sin(x^(2))

Find (dy)/(dx) if y=sin^(2)x^(3)

Find (dy)/(dx) if y=sin^(2)x^(4)

FInd (dy)/(dx) of y=sin^3x

Find (dy)/(dx) of 2x+3y=sin y

Find (dy)/(dx) , if x+y=sin(x-y)

find(dy)/(dx) of y^(y)=sin x

Find (dy)/(dx) when 2x+3y=sin x