Home
Class 12
MATHS
Differentiate y=(e^x)/(1+sinx)...

Differentiate `y=(e^x)/(1+sinx)`

Text Solution

Verified by Experts

Using quotient rule, we have
`(dy)/(dx)=(d)/(dx)((e^(x))/(1+ sin x))`
`=((1+ sin x)cdot(d)/(dx)(e^(x))-e^(x)cdot(d)/(dx)(1+ sin x))/(1+ sin x )^(2)`
`=((1+sin x)cdote^(x)-e^(x)cdot(0 + cos x))/((1+ sin x)^(2))=(e^(x)(1+ sin x - cos x))/((1+ sin x )^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Differentiate y=(e^(x))/(1+sin x)

Differentiate y=tanx

Differentiate y = (sinx)/(cosx)

Differentiate y=x^(sqrtx)

Differentiate y=(tan x)^(log x)

Differentiate y=(sin x)^(2)

Differentiate ((x^(2) sinx)/(1-x))

Differentiate x^(x)+(sinx)^(sinx) with respect to 'x'.

Differentiate : (i) (e^(x))/(x) , (ii) ((2x+3)/(x^(2) - 5)) , (iii) (e^(x))/((1+sinx))

Differentiate y=(x^(3)-1)^(100)