Using quotient rule, we have `(dy)/(dx)=(d)/(dx)((e^(x))/(1+ sin x))` `=((1+ sin x)cdot(d)/(dx)(e^(x))-e^(x)cdot(d)/(dx)(1+ sin x))/(1+ sin x )^(2)` `=((1+sin x)cdote^(x)-e^(x)cdot(0 + cos x))/((1+ sin x)^(2))=(e^(x)(1+ sin x - cos x))/((1+ sin x )^(2))`
Topper's Solved these Questions
DIFFERENTIATION
CENGAGE|Exercise Exercise 3.1|7 Videos
DIFFERENTIATION
CENGAGE|Exercise Exercise 3.2|38 Videos
DIFFERENTIAL EQUATIONS
CENGAGE|Exercise Question Bank|25 Videos
DOT PRODUCT
CENGAGE|Exercise DPP 2.1|15 Videos
Similar Questions
Explore conceptually related problems
Differentiate y=(e^(x))/(1+sin x)
Differentiate y=tanx
Differentiate y = (sinx)/(cosx)
Differentiate y=x^(sqrtx)
Differentiate y=(tan x)^(log x)
Differentiate y=(sin x)^(2)
Differentiate ((x^(2) sinx)/(1-x))
Differentiate x^(x)+(sinx)^(sinx) with respect to 'x'.