Home
Class 12
MATHS
"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x...

`"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x))," show that "(dy)/(dx)=(x+y)/(x-y)`

Text Solution

AI Generated Solution

To solve the problem, we need to differentiate the given equation \( \log(x^2 + y^2) = 2 \tan^{-1}\left(\frac{y}{x}\right) \) with respect to \( x \) and show that \( \frac{dy}{dx} = \frac{x+y}{x-y} \). ### Step-by-step Solution: 1. **Differentiate both sides of the equation:** \[ \frac{d}{dx} \left( \log(x^2 + y^2) \right) = \frac{d}{dx} \left( 2 \tan^{-1}\left(\frac{y}{x}\right) \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)

If log sqrt(x^(2)+y^(2))=tan^(-1)((y)/(x)),then(dy)/(dx) is

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

If tan^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a , show that (dy)/(dx)=(x(1-tana))/(y(1+tana)).

If y=tan^(-1)x, show that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

If log(x+y)=log(xy)+a,"show that"(dy)/(dx)=-(y^(2))/(x^(2))

If log _(10)((x^(3)-y^(3))/(x^(3)+y^(3))) = 2 , then show that (dy)/(dx) = (-99x^(2))/(101y^(2))

If tan ^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a, prove that (dy)/(dx)=(x)/(y)((1-tan a))/((1+tan a))