Home
Class 12
MATHS
If x=e^(cos2t) and y=e^(sin2t) , prove t...

If `x=e^(cos2t)` and `y=e^(sin2t)` , prove that `(dy)/(dx)=-(ylogx)/(xlogy)`

Text Solution

Verified by Experts

`x=e^(cos2t)and y=e^(sin 2t)`
` cos 2t= log x and sin 2t = log y`
`therefore" "cos^(2) 2t +sin^(2) 2t = (log x)^(2) + (log y)^(2)`
`rArr" "(log x)^(2)+(log y)^(2)=1`
Differentiating both sides w.r.t. x, we get
`2log x(1)/(x)+2 log y (1)/(y)(dy)/(dx)=0`
`rArr" "(dy)/(dx)=(-y log x)/(x log y)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x,=e^(cos2t) and y=e^(sin2t), prove that (dy)/(dx),=-(y log x)/(x log y)

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=e^(sin3t),y=e^(cos3t),"show that "(dy)/(dx)=-(ylogx)/(xlogy)

If x=ae^(t)(sin t+cos t) and y=ae^(t)(sin t-cos t),quad prove that (dy)/(dx)=(x+y)/(x-y)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If x=cos t and y=sin t, prove that (dy)/(dx)=(1)/(sqrt(3)) at t=(2 pi)/(3)

If y=e^(x)cos x, prove that (dy)/(dx)=sqrt(2)e^(x)cos(x+(pi)/(4))

If y=e^(sin^(2)x) then (dy)/(dx)=

If x=a(2cost+cos2t),y=a(2sint+sin2t)," then "(dy)/(dx)=