Home
Class 12
MATHS
"If "f(x)=lim(hrarr0) ((sin(x+h))^(log(e...

`"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).`

Text Solution

Verified by Experts

`"Let "g(x)=(sin x)^(log_(e^(x)))`
`therefore" "f(x)=underset(hrarr0)lim(g(x+h)-g(x))/(h)=g'(x)`
`therefore" "f(x)=g'(x)=(d)/(dx)(e^(log, x. log_(e) sin x))`
`(sin x)^(log_(e)x)((1)/(x)cdotlog_(e) sin x + log_(e) x.(1)/(sin x)cdot cos x)`
`therefore" "f(pi//2)=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Q.Let f(x)=lim_(x rarr0)(((sin(x+h))^(ln(x+h))-(sin x)^(ln x))/(h)) then the value of f((pi)/(2)) is

Let f(x)=lT_(h rarr0)(sin(x+h)^(In(x+h))-(sin x)^(In x))/(h) then f((pi)/(2)) is

lim_(x rarr0)(sin x-log(e^(x)cos x))/(x sin x)

lim_(x rarr0)(sin x)/(log_(e)(1+x)^((1)/(2)))

lim_(h rarr0)(log(x+h)-log x)/(h)

f(x)=(lim)_(h rarr0)((sin(x+h))^(1n(x+h))-(sin x)^(1nx))/(h) Then f((pi)/(2)) equal to (a)0(b) equal to 1(c)In(pi)/(2) (d) non-existent

lim_ (x rarr (pi) / (2)) tan x log_ (e) sin x =

Show that lim_(h rarr0)((sin(x+h))^(x+h)-(sin x)^(x))/(h)=(sin x)^(x)[x cot x+In sin x]

lim_(xrarroo) x^(2)sin(log_(e)sqrt(cos(pi)/(x)))

int[lim_(hrarr0)(sec(x+h)-secx)/(h)]dx=