Home
Class 12
MATHS
"If "y=cos^(1)x, "find "(d^(2)y)/(dx^(2)...

`"If "y=cos^(1)x, "find "(d^(2)y)/(dx^(2))` in terms of y alone.

Text Solution

AI Generated Solution

To find the second derivative of \( y = \cos^{-1}(x) \) in terms of \( y \) alone, we will follow these steps: ### Step 1: Express \( x \) in terms of \( y \) Given: \[ y = \cos^{-1}(x) \] Taking the cosine of both sides, we have: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=cos^(-1)x, find (d^(2))/(dx^(2)) in terms of y alone

If y=tan^(-1)x find (d^(2)y)/(dx^(2)) in terms of y alone.

If y=tan^(-1)x, find (d^(2)y)/(dx^(2)) in terms of y alone.

If quad y=cos^(-1)x Find quad (d^(2)y)/(dx^(2)) in terms of y alone.

if y=tan^(-1)x, find (d^(2)y)/(dx^(2))

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y=|(log)_(e)x|, find (d^(2)y)/(dx^(2))

If y=x^(x), find (d^(2)y)/(dx^(2))

If y=x^(x), find (d^(2)y)/(dx^(2))

If y=log(sin x), find (d^(2)y)/(dx^(2))