Home
Class 12
MATHS
If x=a (cos t + t sin t) and y=a ( sin t...

If x=a (cos t + t sin t) and y=a ( sin t- t cos t), find `(d^(2)y)/(dx^(2))`

Text Solution

Verified by Experts

It is given that x =a (cos t + t sin t) and
y=a (sin t - t cos t). Therefore,
`(dx)/(dt)=a[-sin t+ sin t + t cos t]= at cos t`
`(dy)/(dt)=a [ cos t -{cos t - t sin t} ] = at sin t`
`therefore" "(dy)/(dx)=(((dy)/(dt)))/(((dx)/(dt)))=(at sin t)/(at cos t)= tan t`
`"Then, "(d^(2)y)/(dx^(2))=(d)/(dx)((dy)/(dx))=(d)/(dx)(tan t)`
`=(d)/(dt) (tan t)(dt)/(dx)`
`=sec^(2) t. (dt)/(dx)`
`sec^(2)t. (1)/(at cos t)`
`(sec^(3) t)/(at)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find (d^(2)y)/(dx^(2))

If x=a(cos2t+2t sin2t) and y=a(sin2t-2t cos2t), then find (d^(2)y)/(dx^(2))

x=a cos t, y=b sin t

If x=a(cos t+t sin t) and y=a(sin t-t cos t),then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

x = a (cos t + sin t), y = a (sin t-cos t)

7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=cos t+t sin t and y=sin t-t cos t ,then the value of (d^(2)x)/(dy^(2)) is (where 't' is parameter

If x=a sin t and y=a(cos t+(log tan t)/(2)) find (d^(2)y)/(dx^(2))