Home
Class 12
MATHS
Given that cosx/2.cosx/4.cosx/8....=sinx...

Given that `cosx/2.cosx/4.cosx/8....=sinx/x` Then find the sum `1/2^2sec^2x/2+1/2^4sec^2x/4+...`

Text Solution

Verified by Experts

`"We have "cos""(x)/(2)cdotcos""(x)/(4)cdotcos""(x)/(8)...=(sin x)/(x)." Then find the sum "(1)/(2^(2))sec^(2)""(x)/(2)+(1)/(2^(4))sec^(2)""(x)/(4)+...`
Taking log on both sides, we get
`log cos""(x)/(2)+log cos""(x)/(4)+log cos""(x)/(8)...+...=log sin x-log x`
Differentiating both sides with respect to x, we get
`-(1)/(2)(sin""(x)/(2))/(cos""(x)/(2))-(1)/(4)(sin""(x)/(4))/(cos""(x)/(4))-(1)/(8)(sin""(x)/(8))/(cos""(x)/(8))...=(cos x)/(sin x)-(1)/(x)`
`"or "-(1)/(2)tan""(x)/(2)-(1)/(4)tan""(x)/(4)-(1)/(8)tan"(x)/(8)-...=cot x -(1)/(x)`
Differntiating both sides with respect to x, we get
`-(1)/(2^(2))sec^(2)""(x)/(2)-(1)/(4^(2))sec^(2)""(x)/(4)-(1)/(8^(2))sec^(2)""(x)/(8)-...=-cosec^(2)x+(1)/(x^(2))`
`"or "(1)/(2^(2))sec^(2)""(x)/(2)+(1)/(4^(2))sec^(2)""(x)/(4)+(1)/(8^(2))sec^(2)""(x)/(8)+...=cosec^(2)x-(1)/(x^(2))`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Given that (cos x)/(2)*(cos x)/(4)*(cos x)/(8)...=(sin x)/(x) Then find the sum (1)/(2^(2))(sec^(2)x)/(2)+(1)/(2^(4))(sec^(2)x)/(4)+...

8sin.x/8.cos.x/2.cos.x/4.cos.x/8=

If (1+sinx)/(cosx)+(cosx)/(1+sinx)=4 , then find x.

Find intcos2x*log((cosx+sinx)/(cosx-sinx))dx

If sinx+cosx=1/5 , then find the value of tan 2x .

If 3sinx+4cosx=2 , then find the value of 3cosx-4sinx .

Slove (2sinx-cosx)(1+cosx)=sin^2x

int(5cosx-4sinx+1/cos^2x)dx