Home
Class 12
MATHS
If y=f(a^x)a n df^(prime)(sinx)=(log)e x...

If `y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,t h e nfin d(dy)/(dx),` if it exists, where `pi/2

Text Solution

Verified by Experts

Given that `f'(sin x)=(df(sin x))/(d(sin x)=log_(e) x`
`=log_(e)(pi-sin^(-1)(sin x))`
`[because sin^(-1) sin x = pi -x x for x in (pi//2,pi)]`
`(dt(t))/(dt)=log_(e)(pi-sin^(-1)t)`
`"or "f'(t)=log_(e)(pi-sin^(-1)t)" (1)"`
`and " "y=f(a^(x))`
`therefore" "(dy)/(dx)=f'(a^(x))a^(x)log_(e)a`
`=a^(x)log_(e)a log_(e)(pi-sin^(-1)a^(x))" [using (1)]"`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=f(a^(x)) and f'(sin x)=log_(e)x, then find (dy)/(dx) if it exists,where (pi)/(2)

If y = e^(log x ) , then ( dy)/(dx)

If y=e^(log_(e)x)," then "(dy)/(dx)=

If y = e^(x+2log x ),then (dy)/(dx)=

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

If y=sinx+e^(x), Then find (dy)/(dx) .

If y= e^(log (log x )) ,then (dy)/(dx) =

If y=e^log x , find dy/dx

If y = log_(a) x then (dy )/(dx) at x =e is

If e^(x-y) =log ((x)/(y)),then (dy)/(dx) =