Home
Class 12
MATHS
If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-...

If `y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1`, then prove that `(y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]`

Text Solution

Verified by Experts

`y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+((c+x-c)/(x-c))`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(x)/(x-c)`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx+x(x-b))/((x-b)(x-c))`
`=(ax^(2))/((x-a)(x-b)(x-c))+(x^(2))/((x-b)(x-c))`
`=(ax^(2)+x^(2)(x-a))/((x-a)(x-b)(x-c))`
`=(x^(3))/((x-a)(x-b)(x-c))`
`therefore" "log y= log {(x^(3))/((x-a)(x-b)(x-c))}`
`"or "log y=3log x-{log(x-a)+log(x-b)+log(x-c)}`
On differentiating w.r.t. x, we get
`(1)/(y)(dy)/(dx)=(3)/(x)-{(1)/(x-a)+(1)/(x-b)+(1)/(x-c)}`
`"or "(dy)/(dx)=y{((1)/(x)-(1)/(x-a))+((1)/(x)-(1)/(x-b))+((1)/(x)-(1)/(x-c))}`
`=y{-(a)/(x(x-a))-(b)/(x(x-b))-(c)/(x(x-c))}`
`=(y)/(2){(a)/(a-x)+(b)/(b-x)+(c)/(x-c)}.`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then prove that (y')/(y)=(1)/(x)[(a)/(a-x)+(b)/(b-x)+(c)/(c-x)]

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then (y')/(y)=

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 find (dy)/(dx)

(x^(3))/((x-a)(x-b)(x-c))=1+(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

(a^2/(x-a)+b^2/(x-b)+c^2/(x-c)+a+b+c)/(a/(x-a)+b/(x-b)+c/(x-c))

If |(a,y,z),(x,b,z),(x,y,c)|=0 , then prove that (a)/(a-x)+(b)/(b-y)+(c)/(c-z)=2

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

If x=b-c+a, y=c-a+b, z=a-b+c , then prove that (b-a) x + (c-b)y +(a-c)z=0