Home
Class 12
MATHS
If f(x)=(f(x))/y+(f(y))/x holds for all ...

If `f(x)=(f(x))/y+(f(y))/x` holds for all real `x` and `y` greater than `0a n df(x)` is a differentiable function for all `x >0` such that `f(e)=1/e ,t h e nfin df(x)dot`

Text Solution

Verified by Experts

We have
`f(xy)=(f(x))/(y)+(f(y))/(x)" for all "x, y gt0`
`"or "f(1)=f(1)+f(1)" [Putting x=y=1]"`
`"or "f(1)=0`
Now, f(x) is differentiable for all x `gt`0. Therefore,
`f'(x)=underset(hrarr0)lim(f(x+h)-f(x))/(h)`
`=underset(hrarr0)lim(f{x(1+(h)/(x))}-f(x))/(h)`
`=underset(hrarr0)lim((f(x))/(1+(h)/(x))+(f(1+(h)/(x)))/(x)-f(x))/(h)`
`=underset(hrarr0)lim(((-h)/(x)f(x))/(1+(h)/(x))+(f(1+(h)/(x)))/(x))/(h)`
`=-(f(x))/(x)+underset(hrarr0)lim(f(1+(h)/(x)))/(hx)`
`=-(f(x))/(x)+(1)/(x^(2))underset(hrarr0)lim(f(1+(h)/(x)))/((h)/(x))`
`=(-f(x))/(x)+(A)/(x^(2))," where "A=underset(hrarr0)lim(f(1+(h)/(x)))/((h)/(x))`
`therefore" "(d)/(dx)(f(x))=-(f(x))/(x)=(A)/(x^(2))`
`"or "(d)/(dx)(f(x))+(f(x))/(x)=(A)/(x^(2))`
`"or "x(d)/(dx)(f(x))+f(x)=(A)/(x)`
`"or "(d)/(dx)[xf(x)]=(A)/(x)`
`"or "xf(x)=Alog_(e)x+log C" [On integration]"`
Putting x=1, we get
`f(1)=A log_(e)1+log C`
`"or "0=logC" "[becausef(1)=0]`
`"or "xf(x)=A log_(e)x`
Putting x=e, we get
`ef(e)=A log_(e)e`
`"or "A=1" "[becausef(e)=(1)/(e)]`
`therefore" "xf(x)=log_(e)x`
`"or "f(x)(log_(e)x)/(x)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(f(x))/(y)+(f(y))/(x) holds for all real x and y greater than 0 and f(x) is a differentiable function for all x>0 such that f(e)=(1)/(e), then find f(x) .

f(x)=int_0^x e^t f(t)dt+e^x , f(x) is a differentiable function on x in R then f(x)=

If f is a differentiable function such that f(xy)=f(x)+f(y):x,y in R, then f(e)+f((1)/(e)) is

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

Let f(x+y)=f(x)+f(y)+2xy-1 for all real x and f(x) be a differentiable function.If f'(0)=cosalpha, the prove that f(x)>0AA x in R

Let f be a differentiable function satisfying f(x/y)=f(x)-f(y) for all x ,\ y > 0. If f^(prime)(1)=1 then find f(x)dot

If f(x+y)=f(x)f(y) for all real x and y, f(6)=3 and f'(0)=10 , then f'(6) is

f(x+y)=f(x).f(y)AA x,y in R and f(x) is a differentiable function and f'(0)=1,f(x)!=0 for any x.Findf(x)