Home
Class 12
MATHS
Suppose p(x)=a0+a1x+a2x^2++an x^ndot If ...

Suppose `p(x)=a_0+a_1x+a_2x^2++a_n x^ndot` If `|p(x)|lt=e^(x-1)-1|` for all `xgeq0,` prove that `|a_1+2a_2++n a_n|lt=1.`

Text Solution

Verified by Experts

`"Given "p(x)=a_(0)+a_(1)x+ax^(2)+...+an^(x^(n))`
`therefore" "f'(x)=0+a_(1)+2a_(2)x+...+na_(n)x^(n-1)`
`"or "p'(1)=a_(1)+2a_(2)+...+na_(n)" (1)"`
`"Now, "|p(x)|le|e^(x-1)-1|`
`therefore" "|p(1)|le0" "(because|e^(1-1)-1|=|e^(0)-1|=|1-1|=0)`
`"or "p(1)=0" "[therefore|p(1)|ge0]`
As `|p(x)|le|e^(x-1)-1|`,we get
`|p(1+h)|le|e^(h)-1|AAh gt-1, h ne0`
`"or "|p(1+h)-p(1)|le|e^(h-1)|`
`"or "|(p(1+h)-p(1))/(h)|le|(e^(h)-1)/(h)|`
Taking limit as `hrarr0`, we get
`underset(hrarr0)lim|(p(1+h)-p(1))/(h)|leunderset(hrarr0)lim|(e^(h)-1)/(h)|`
`"or "|p'(1)|le1`
`"or "|a_(1)+2a_(2)+...+na_(n)|le|"`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Suppose p(x)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(n)x^(n). If |p(x)| =0, prove that |a_(1)+2a_(2)+...+na_(n)|<=1

If cosx=a_0+a_1 x+a_2x^2+... then the value of a_2 is

If (1+x)^n=a_0+a_1x+a_2x^2+...+a_nx^n then find : a_1-a_3+a_5-a_7+… .

If (1+x)^n=a_0+a_1x+a_2x^2+...+a_nx^n then find : a_0+a_3+a_6+a_9+… .

If (1+x)^n=a_0+a_1x+a_2x^2).....+a_nx^n then value of the series a_(0)-a_(2) + a_(4)-a_(6) +….. is

If P(x) = a _0 + a _1 x ^(2) + a _2 x^(4) + … + a _n x ^(2n) is a polynomial in a real variable x with 0 lt a _0 lt a _1 lt a _2 lt … lt a_n . Then, the function P (x) has