Home
Class 12
MATHS
y=sin^(-1)""(2x)/(1+x^(2)),-1lexle1...

`y=sin^(-1)""(2x)/(1+x^(2)),-1lexle1`

Text Solution

Verified by Experts

The correct Answer is:
`(2)/(1+x^(2))`

`y=sin^(-1)((2x)/(1+x^(2)))`
Let `x = tan theta.` Therefore,
`y=sin^(-1)((2tan theta)/(1+tan^(2)theta))`
`=sin^(-1)(sin 2 theta)`
`=2theta`
`=2tan^(-1)x`
`therefore" "(dy)/(dx=(d)/(dx)(2 tan^(-1)x)`
`=2(d)/(dx)(tan^(-1)x)`
`(2)/(1+x^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Sketch for the curve y=sin^(-1)((2x)/(1+x^(2)))

y=sin^(-1)((2x)/(1+x^(2))), prove that (1+x^(2))(dy)/(dx)=2

Graph of y=sin^(-1)((2x)/(1+x^(2)))

Find the domain of: y=sin^(-1)((x^(2))/(1+x^(2)))

find the domain of y=sin^(-1)((x^(2))/(1+x^(2)))

If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) , then "………"lt y lt "………" .

Statement I Derivative of sin^(-1)((2x)/(1+x^(2)))w.r.t. cos^(-1)((1-x^(2))/(1+x^(2))) is 1 for 0ltxlt1. sin^(-1)((2x)/(1+x^(2)))=cos^(-1)((1-x^(2))/(1+x^(2))) for -1lexle1