Home
Class 12
MATHS
y=sec^(-1)""(1)/(2x^(2)-1),0ltxlt(1)/(sq...

`y=sec^(-1)""(1)/(2x^(2)-1),0ltxlt(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) for \( 0 < x < \frac{1}{\sqrt{2}} \), we will differentiate \( y \) with respect to \( x \). ### Step-by-Step Solution **Step 1: Rewrite the function** We start with the given function: \[ y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \] **Step 2: Set \( x = \cos \theta \)** To simplify the expression, we can set \( x = \cos \theta \). This gives us: \[ y = \sec^{-1}\left(\frac{1}{2\cos^2 \theta - 1}\right) \] **Step 3: Use the double angle identity** Recall the double angle identity for cosine: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] Thus, we can rewrite the expression: \[ y = \sec^{-1}(\sec(2\theta)) \] **Step 4: Simplify \( y \)** Since \( y = \sec^{-1}(\sec(2\theta)) \), we have: \[ y = 2\theta \] **Step 5: Express \( \theta \) in terms of \( x \)** From our substitution \( x = \cos \theta \), we can express \( \theta \): \[ \theta = \cos^{-1}(x) \] Therefore: \[ y = 2\cos^{-1}(x) \] **Step 6: Differentiate \( y \) with respect to \( x \)** Now we differentiate \( y \): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\cos^{-1}(x)) \] Using the derivative of \( \cos^{-1}(x) \): \[ \frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1 - x^2}} \] Thus: \[ \frac{dy}{dx} = 2 \left(-\frac{1}{\sqrt{1 - x^2}}\right) = -\frac{2}{\sqrt{1 - x^2}} \] ### Final Result The derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{2}{\sqrt{1 - x^2}} \]

To solve the problem \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) for \( 0 < x < \frac{1}{\sqrt{2}} \), we will differentiate \( y \) with respect to \( x \). ### Step-by-Step Solution **Step 1: Rewrite the function** We start with the given function: \[ y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

y = sec^(-1)((1)/(2x^(2) -1 )), 0 lt x lt (1)/(sqrt(2))

If y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2)),="" then="" find="" (dy)/(dx)

If y=tan^(-1)((u)/(sqrt(1-u^(2)))) and x=sec^(-1)((1)/(2u^(2)-1))u in(0,(1)/(sqrt(2)))uu((1)/(sqrt(2)),1), prove that 2(dy)/(dx)+1=0

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

sec^(-1)((1)/(sqrt(1-x^(2))))

The differential cofficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is-

The differential coefficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

cos^(-1)((1)/(sqrt(2)))+sec^(-1)(-sqrt(2))