Home
Class 12
MATHS
Find (dy)/(dx) for the function: y=sin^(...

Find `(dy)/(dx)` for the function: `y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)`

Text Solution

Verified by Experts

The correct Answer is:
`(-1)/(sqrt(x-x^(2)))`

`sin^(-1)sqrt(1-x)=sin^(-1)sqrt(1(sqrt(x))^(2))=cos^(-1)sqrt(x)`
`therefore" "y=2 cos^(-1)sqrt(x)`
`"or "(dy)/(dx)=2xx(-1)/(sqrt(1-x))xx(1)/(2sqrt(xx))=(-1)/(sqrt(1-x^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for the function: y=sqrt(sin sqrt(x))

Find (dy)/(dx) in the following: y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Find (dy)/(dx) for the function: y=log_(e)sqrt((1+sin x)/(1-sin gx)), where x=(pi)/(3)

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

If y=sin ^(-1)sqrt (1-x^(2)),then (dy)/(dx)=

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

Find dy/dx for the following functions: y= (sqrt x + (1/sqrt x))^2 .

Find the (dy)/(dx) of y=sin^(-1)sqrt(1-x^2)

Find quad (dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),-1<=x<=1