Home
Class 12
MATHS
y=sqrt(sinsqrt(x))...

`y=sqrt(sinsqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sqrt{\sin(\sqrt{x})} \), we will use the chain rule. Here’s a step-by-step solution: ### Step 1: Rewrite the Function We start with the function: \[ y = \sqrt{\sin(\sqrt{x})} \] This can be rewritten using exponent notation: \[ y = (\sin(\sqrt{x}))^{1/2} \] ### Step 2: Differentiate Using the Chain Rule To find \( \frac{dy}{dx} \), we apply the chain rule. The chain rule states that if \( y = f(g(x)) \), then: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \] In our case, let: - \( f(u) = u^{1/2} \) where \( u = \sin(\sqrt{x}) \) - \( g(x) = \sqrt{x} \) Now, we differentiate \( f(u) \) and \( g(x) \): \[ f'(u) = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}} \] \[ g'(x) = \frac{1}{2\sqrt{x}} \] ### Step 3: Differentiate the Inner Function Next, we need to differentiate \( \sin(\sqrt{x}) \): \[ \frac{d}{dx}(\sin(\sqrt{x})) = \cos(\sqrt{x}) \cdot g'(x) = \cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] ### Step 4: Combine the Derivatives Now we can combine everything using the chain rule: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) = \frac{1}{2\sqrt{\sin(\sqrt{x})}} \cdot \cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] ### Step 5: Simplify the Expression Putting it all together: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{\sin(\sqrt{x})}} \cdot \cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} = \frac{\cos(\sqrt{x})}{4\sqrt{x}\sqrt{\sin(\sqrt{x})}} \] ### Final Answer Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{\cos(\sqrt{x})}{4\sqrt{x}\sqrt{\sin(\sqrt{x})}} \] ---

To differentiate the function \( y = \sqrt{\sin(\sqrt{x})} \), we will use the chain rule. Here’s a step-by-step solution: ### Step 1: Rewrite the Function We start with the function: \[ y = \sqrt{\sin(\sqrt{x})} \] This can be rewritten using exponent notation: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

y=sqrt(x+sqrt(x))

y=logsqrt(sinsqrt(e^(x)))

y=logsqrt(sinsqrt(e^(x)))

cos(sinsqrt(ax+b))

find dy/dx -: y=sqrt(sinx)/sinsqrt(x)

Let f(x)=x^(2)-2sqrt((sinsqrt(3)-sinsqrt(2)))x-(cossqrt(3)-cos sqrt(2))

What is int(sinsqrt(x))/(sqrt(x))dx is equal to ?

If int_0^(pi^2/4) (2sinsqrt(x)+sqrt(x)cossqrt(x))dx=pi^2/n , then n = ….

given x=(sqrt(7)+sqrt(3))/(sqrt(7)-sqrt(3)),y=(sqrt(7)-sqrt(3))/(sqrt(7)+sqrt(3)) find the value of x^(4)+y^(4)+(x+y)^(4)