Home
Class 12
MATHS
y=logsqrt(sinsqrt(e^(x)))...

`y=logsqrt(sinsqrt(e^(x)))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(4)e^(x//2)cot (e^(x//2))`

`(d)/(dx)[logsqrt(sin)sqrt(e^(x))]=(d)/(dx)[(1)/(2)log (sinsqrt(e^(x)))]`
`=(1)/(2)cot sqrt(e^(x))(1)/(2sqrt(e^(x)))e^(x)=(1)/(4)e^(x//2)cot (e^(x//2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

y=sqrt(sinsqrt(x))

If y=sqrt(sinsqrt(x)) then (dy)/(dx) is :

find dy/dx -: y=sqrt(sinx)/sinsqrt(x)

cos(sinsqrt(ax+b))

Differentiate the following w.r.t. x : log(sinsqrt(1+x^(2)))

If y=logsqrt((1-cos((3x)/(2)))/(1+cos ((3x)/(2)))),"then "dy/dx=

If y=logsqrt((1+sin^(2)x)/(1-sinx)) , find (dy)/(dx) .

Let f(x)=x^(2)-2sqrt((sinsqrt(3)-sinsqrt(2)))x-(cossqrt(3)-cos sqrt(2))

logsqrt((1+x^2)/(1-x^2))