Home
Class 12
MATHS
Find (dy)/(dx) for the function: y=(log)...

Find `(dy)/(dx)` for the function: `y=(log)_esqrt((1+sinx)/(1-s ingx)),w h e r ex=pi/3`

Text Solution

Verified by Experts

The correct Answer is:
2

`y=log sqrt((1+ sin x)/(1- sin x))=(1)/(2)[log_(e)(1+ sin x) -log _(e) (1- sin x)]`
`therefore" "(dy)/(dx)=(1)/(2){(1)/(1+ sin x dx)(d)/(dx)(1+ sin x)-(1)/(1- sin x )(d)/(dx)(1- sin x )}`
`=(1)/(2){(cos x)/(1+ sin x)+(cos x )/(1-sin x)}`
`=(1)/(2)cos x ((2)/(1- sin^(2)x))=(cos x)/(cos^(2)x)=sec x`
`"or "(dy)/(dx):|_(x=(pi)/(3))=sec""(pi)/(3)=2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for the function: y=log_(e)sqrt((1+sin x)/(1-sin gx)), where x=(pi)/(3)

Find (dy)/(dx) for the function: y=log sqrt(sin sqrt(e^(x)))

Find (dy)/(dx) of y=(log)_e(sqrt((1+sinx)/(1-sinx)))

Find (dy)/(dx) where (i) y=e^(log x)+tanx

Find (dy)/(dx) if,y=(e^(ax)sec x log x)/(sqrt(1-2x))

Find (dy)/(dx), when y=e^(x)log(1+x^(2))

Find (dy)/(dx) of y=x^((log)_e x)

Find (dy)/(dx) , when: y=(x^(3)sinx)/(e^(x))

Find (dy)/(dx) ,if : (i) x=y(1+log x)