Home
Class 12
MATHS
y=(x+sin x)/(x+cos x) find dy/dx...

`y=(x+sin x)/(x+cos x)` find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{x + \sin x}{x + \cos x} \), we will use the quotient rule for differentiation. The quotient rule states that if you have a function in the form of \( \frac{U}{V} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{V \frac{dU}{dx} - U \frac{dV}{dx}}{V^2} \] Where: - \( U = x + \sin x \) - \( V = x + \cos x \) ### Step 1: Differentiate \( U \) and \( V \) First, we need to find \( \frac{dU}{dx} \) and \( \frac{dV}{dx} \). 1. **Differentiate \( U \)**: \[ U = x + \sin x \] \[ \frac{dU}{dx} = 1 + \cos x \] 2. **Differentiate \( V \)**: \[ V = x + \cos x \] \[ \frac{dV}{dx} = 1 - \sin x \] ### Step 2: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{(x + \cos x)(1 + \cos x) - (x + \sin x)(1 - \sin x)}{(x + \cos x)^2} \] ### Step 3: Simplify the Expression Now we will simplify the numerator: 1. **Expand the first term**: \[ (x + \cos x)(1 + \cos x) = x(1 + \cos x) + \cos x(1 + \cos x) = x + x \cos x + \cos x + \cos^2 x \] 2. **Expand the second term**: \[ (x + \sin x)(1 - \sin x) = x(1 - \sin x) + \sin x(1 - \sin x) = x - x \sin x + \sin x - \sin^2 x \] 3. **Combine the expansions**: \[ \text{Numerator} = (x + x \cos x + \cos x + \cos^2 x) - (x - x \sin x + \sin x - \sin^2 x) \] Distributing the negative sign: \[ = x + x \cos x + \cos x + \cos^2 x - x + x \sin x - \sin x + \sin^2 x \] Now, combine like terms: \[ = x \cos x + x \sin x + \cos x + \cos^2 x - \sin x + \sin^2 x \] Notice that \( \sin^2 x + \cos^2 x = 1 \): \[ = x \cos x + x \sin x + \cos x - \sin x + 1 \] ### Step 4: Write the Final Derivative Thus, we have: \[ \frac{dy}{dx} = \frac{x \cos x + x \sin x + \cos x - \sin x + 1}{(x + \cos x)^2} \] ### Final Answer \[ \frac{dy}{dx} = \frac{x(\cos x + \sin x) + \cos x - \sin x + 1}{(x + \cos x)^2} \]

To find the derivative of the function \( y = \frac{x + \sin x}{x + \cos x} \), we will use the quotient rule for differentiation. The quotient rule states that if you have a function in the form of \( \frac{U}{V} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{V \frac{dU}{dx} - U \frac{dV}{dx}}{V^2} \] Where: - \( U = x + \sin x \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=(sin x)^(x)+cos x, find (dy)/(dx)

If y=(x sin x)/(sin x+cos x) then find dy/dx

If y=sqrt(x)sin x cos x* find (dy)/(dx)

If y=(sin x)/(x+cos x) , then find (dy)/(dx) .

If y=x^(tan x)+(sin x)^(cos x) , find (dy)/(dx)

y=x^(sinx)+(sin x)^(cos x), then find (dy)/(dx)

" (b) y=(sin x-cos x)^((sin x-cos x)) find dy/dx

if y=(sin x)^(cos x). Then (dy)/(dx)=