Home
Class 12
MATHS
"If "log(e)(log(e) x-log(e)y)=e^(x^(2(y)...

`"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_e(\log_e x - \log_e y) = e^{x^2 y}(1 - \log_e x) \) and find the value of \( y'(e) \), we will follow these steps: ### Step 1: Differentiate both sides We start by differentiating both sides of the equation with respect to \( x \). \[ \frac{d}{dx} \left( \log_e(\log_e x - \log_e y) \right) = \frac{d}{dx} \left( e^{x^2 y}(1 - \log_e x) \right) \] ### Step 2: Apply the chain rule on the left side Using the chain rule on the left side: \[ \frac{1}{\log_e x - \log_e y} \cdot \left( \frac{1}{x} - \frac{1}{y} \cdot y' \right) \] ### Step 3: Differentiate the right side For the right side, we will use the product rule: \[ \frac{d}{dx} \left( e^{x^2 y} \right) \cdot (1 - \log_e x) + e^{x^2 y} \cdot \frac{d}{dx}(1 - \log_e x) \] Calculating the derivative of \( e^{x^2 y} \): \[ \frac{d}{dx}(e^{x^2 y}) = e^{x^2 y} \cdot (2xy + x^2 y') \] And the derivative of \( (1 - \log_e x) \): \[ \frac{d}{dx}(1 - \log_e x) = -\frac{1}{x} \] ### Step 4: Combine the derivatives Putting it all together, we have: \[ \frac{1}{\log_e x - \log_e y} \left( \frac{1}{x} - \frac{1}{y} y' \right) = e^{x^2 y} \left( (2xy + x^2 y')(1 - \log_e x) - \frac{e^{x^2 y}}{x} \right) \] ### Step 5: Substitute \( x = e \) Now we substitute \( x = e \): \[ \log_e e = 1 \quad \text{and} \quad \log_e y = 0 \Rightarrow y = 1 \] ### Step 6: Evaluate the derivatives Substituting \( x = e \) and \( y = 1 \): \[ \frac{1}{1 - 0} \left( \frac{1}{e} - \frac{1}{1} y' \right) = e^{e^2} \left( (2e \cdot 1 + e^2 y')(1 - 1) - \frac{e^{e^2}}{e} \right) \] This simplifies to: \[ \frac{1}{e} - y' = 0 \] ### Step 7: Solve for \( y' \) Thus, we find: \[ y' = \frac{1}{e} \] ### Final Answer The value of \( y'(e) \) is \( \frac{1}{e} \). ---

To solve the equation \( \log_e(\log_e x - \log_e y) = e^{x^2 y}(1 - \log_e x) \) and find the value of \( y'(e) \), we will follow these steps: ### Step 1: Differentiate both sides We start by differentiating both sides of the equation with respect to \( x \). \[ \frac{d}{dx} \left( \log_e(\log_e x - \log_e y) \right) = \frac{d}{dx} \left( e^{x^2 y}(1 - \log_e x) \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

log_(e)x-log_(e)y=a,log_(e)y-log_(e)z=b&log_(e)z-log_(e)x=c, then find the value of ((x)/(y))^(b-c)*((y)/(z))^(c-a)*((z)/(x))^(a-b)=?

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

If y=e^(1+log_(e)x) , then the value of (dy)/(dx) is equal to

if log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0 , then

If y=x^(3)log_(e)x, then find y'' andy'''.

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

Find the range of f(x)=log_(e)x-((log_(e)x)^(2))/(|log_(e)x|)

y=(log_(e)x)^(sinx)

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is