Home
Class 12
MATHS
"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(...

`"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(t=2\) given the equations \(x = \frac{2t}{1+t^2}\) and \(y = \frac{1-t^2}{1+t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) The formula for \(x\) is: \[ x = \frac{2t}{1+t^2} \] Using the quotient rule, where \(u = 2t\) and \(v = 1+t^2\): \[ \frac{dx}{dt} = \frac{v \cdot \frac{du}{dt} - u \cdot \frac{dv}{dt}}{v^2} \] Calculating \(\frac{du}{dt}\) and \(\frac{dv}{dt}\): \[ \frac{du}{dt} = 2, \quad \frac{dv}{dt} = 2t \] Now substituting into the quotient rule: \[ \frac{dx}{dt} = \frac{(1+t^2)(2) - (2t)(2t)}{(1+t^2)^2} \] \[ = \frac{2 + 2t^2 - 4t^2}{(1+t^2)^2} = \frac{2 - 2t^2}{(1+t^2)^2} = \frac{2(1-t^2)}{(1+t^2)^2} \] ### Step 2: Differentiate \(y\) with respect to \(t\) The formula for \(y\) is: \[ y = \frac{1-t^2}{1+t^2} \] Using the quotient rule again, where \(u = 1-t^2\) and \(v = 1+t^2\): \[ \frac{dy}{dt} = \frac{v \cdot \frac{du}{dt} - u \cdot \frac{dv}{dt}}{v^2} \] Calculating \(\frac{du}{dt}\) and \(\frac{dv}{dt}\): \[ \frac{du}{dt} = -2t, \quad \frac{dv}{dt} = 2t \] Now substituting into the quotient rule: \[ \frac{dy}{dt} = \frac{(1+t^2)(-2t) - (1-t^2)(2t)}{(1+t^2)^2} \] \[ = \frac{-2t - 2t^3 - 2t + 2t^3}{(1+t^2)^2} = \frac{-4t}{(1+t^2)^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{-4t/(1+t^2)^2}{2(1-t^2)/(1+t^2)^2} \] \[ = \frac{-4t}{2(1-t^2)} = \frac{-2t}{1-t^2} \] ### Step 4: Evaluate \(\frac{dy}{dx}\) at \(t=2\) Substituting \(t=2\): \[ \frac{dy}{dx} = \frac{-2(2)}{1-(2^2)} = \frac{-4}{1-4} = \frac{-4}{-3} = \frac{4}{3} \] ### Final Answer \[ \frac{dy}{dx} \text{ at } t=2 \text{ is } \frac{4}{3} \]

To find \(\frac{dy}{dx}\) at \(t=2\) given the equations \(x = \frac{2t}{1+t^2}\) and \(y = \frac{1-t^2}{1+t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) The formula for \(x\) is: \[ x = \frac{2t}{1+t^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)), find (dy)/(dx)

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)),quad find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If sinx=(2t)/(1+t^(2)),tany=(2t)/(1-t^(2)),"find "dy/dx

If x =a ((1-t^(2))/( 1+ t^(2))),y =(2bt )/(1+t^(2) ),then (dy)/(dx) =

If y=t^(2)-t+1," then: "(dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to