Home
Class 12
MATHS
If x=a(cost+1/2log tan^2t) and y=asint, ...

If `x=a(cost+1/2log tan^2t)` and `y=asint`, then find `(dy)/(dx)` at `t=pi/4`

Text Solution

Verified by Experts

The correct Answer is:
1

`x=a[cos t + log tan""(t)/(2)]and y= a sin t`
Differentiating w.r.t. t, we get
`=a[-sin t + (1)/(tan t//2)sec^(2)""(t)/(2)xx(1)/(2)]`
`(dx)/(dt)=a[-sin t+(1)/(2 sin (t//2)cos (t//2))]`
`=a[-sin t +(t)/(sin t)] and (dy)/(dt)=a cos t`
`therefore" "(dy)/(dx)=(dy//dt)/(dx//dt)=(a cos t)/((a cos^(2)t)/(sin t))=tan t`
`"At "t=pi//4, (dy)/(dx)=1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)

If x=a (cos t +log (tan ((t)/(2)) )) ,y =a sin t ,then (dy)/(dx) =

If x = ct and y=c/t , find (dy)/(dx) at t=2.

If x=te^(t) and y=1+log t, find (dy)/(dx)

If x=a(cos t+(log tan)(1)/(2)),y=a sin t then (dy)/(dx) is equal to

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

If x=a(cos t+(log tan t)/(2)),y=a sin t evaluate (d^(2)y)/(dx^(2)) at t=(pi)/(3)

Find (dy)/(dx) if x=asqrt(cos2t) cost and y=asqrt(cos2t) sint then, find ((dy)/(dx)|)_(t=pi//6)

x=acost,y=asint . find dy/dx

If x=ct and y= (c )/(t) , find (dy)/(dx) at t=2 is