Home
Class 12
MATHS
Suppose f(x)=e^(ax)+e^(bx)," where " a n...

Suppose `f(x)=e^(ax)+e^(bx)," where " a ne b,` and that f''(x) -2f'(x)-15f(x)=0 for all x. Then the product ab is

A

25

B

9

C

-15

D

-9

Text Solution

AI Generated Solution

To solve the problem, we start with the function given: \[ f(x) = e^{ax} + e^{bx} \] where \( a \neq b \). We also have the differential equation: \[ f''(x) - 2f'(x) - 15f(x) = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Comprehension)|23 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Suppose f(x)=e^(a x)+e^(b x) , where a!=b , and that f"(x)-2f'(x)-15f(x)=0 for all x . Then the product a b is equal to 25 (b) 9 (c) -15 (d) -9

Suppose f(x)=e^(ax)+e^(bx), where a!=b, and that f''(x)-2f'(x)-15f(x)=0 for all x Then the value of (ab)/(3) is

Suppose f(x)=e^(ax)+e^(bx) ,where a!=b, and that f''(x)-2f'(x)-15f(x)=0 for all x Then the value of ab is equal to:

Suppose f(x)=e^(ax)+e^(bx), where aneb and f''(x)-2f'(x)-15f(x)=0 for all x, then the value of |a+b| is equal to......

Suppose f(x)=e^(a x)+e^(b x),w h e r ea!=b , and that f^(primeprime)(x)-2f^(prime)(x)-15f(x)=0 for all x . Then the product a b is (a)25 (b) 9 (c) -15 (d) -9

Consider the quadratic function f(x)=ax^(2)+bx+c where a,b,c in R and a!=0, such that f(x)=f(2-x) for all real number x. The sum of the roots of f(x) is

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)-2.f(2x)=

Suppose f(x)=(3)^(px)+(3)^(qx), where p!=q and (f''(x))/((log_(e)3)^(2))-(2f'(x))/((log_(e)3))-15f(x)=0 for all x, then the value of |p+q| is

Suppose f(x)-ax+b and g(x)=bx+a where a and b are positive integets If f(g(50))-g(f(50))=28 then the product (ab) can have the value equal to

If f(x)=|x|, then f'(x), where x ne0 is equal to

CENGAGE-DIFFERENTIATION-Exercise (Single)
  1. If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b...

    Text Solution

    |

  2. If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b...

    Text Solution

    |

  3. Suppose f(x)=e^(ax)+e^(bx)," where " a ne b, and that f''(x) -2f'(x)-1...

    Text Solution

    |

  4. (d^(20)y)/(dx^(20))(2cosxcos3x)i se q u a lto 2^(20)(cos2x-2^(20)os3x...

    Text Solution

    |

  5. (d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) (n !)/(x^n) ((n-2)!)/(x^n) (d...

    Text Solution

    |

  6. "If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

    Text Solution

    |

  7. If a x^2+2h x y+b y^2=1,t h e n(d^(2y))/(dx^2) is (h^2-a b)/((h x+b y)...

    Text Solution

    |

  8. "If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y(2)+xy(1) is (where ...

    Text Solution

    |

  9. If ( sin x) (cos y) = 1//2, then d^(2)y//dx^(2) at (pi//4, pi//4) is

    Text Solution

    |

  10. A function f satisfies the condition f(x)=f'(x)+f''(x)+f''(x)+…, where...

    Text Solution

    |

  11. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  12. If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is (a) a constant (b) a fun...

    Text Solution

    |

  13. "If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

    Text Solution

    |

  14. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  15. Let y=in (1+ cos x)^(2). The the value of (d^(2)y)/(dx^(2))+(2)/(e^(y/...

    Text Solution

    |

  16. x=tcost ,y=t+sintdot Then (d^(2x))/(dy^2)a tt=pi/2 is (pi+4)/2 (b) -(p...

    Text Solution

    |

  17. "Let "y=t^(10)+1 and x=t^(8)+1." Then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  18. If x = log p and y=(1)/(p), then

    Text Solution

    |

  19. If x=varphi(t), y=psi(t),t h e n(d^(2y))/(dx^2) is (varphi^(prime)psi^...

    Text Solution

    |

  20. If f(x)=x^4tan(x^3)-x1n(1+x^2), then the value of (d^4(f(x)))/(dx^4) ...

    Text Solution

    |