Home
Class 12
MATHS
"If "y= xlog ((x)/(a+bx))," then "x^(3)(...

`"If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=`

A

`x(dy)/(dx)-y`

B

`(x(dy)/(dx)-y)^(2)`

C

`y(dy)/(dx)-x`

D

`(y(dy)/(dx)-x)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( x^3 \frac{d^2y}{dx^2} \) where \( y = x \log\left(\frac{x}{a + bx}\right) \). ### Step 1: Differentiate \( y \) to find \( \frac{dy}{dx} \) We start with the function: \[ y = x \log\left(\frac{x}{a + bx}\right) \] Using the product rule: \[ \frac{dy}{dx} = \frac{d}{dx}(x) \cdot \log\left(\frac{x}{a + bx}\right) + x \cdot \frac{d}{dx}\left(\log\left(\frac{x}{a + bx}\right)\right) \] Calculating the first part: \[ \frac{d}{dx}(x) = 1 \quad \Rightarrow \quad \log\left(\frac{x}{a + bx}\right) \] Now for the second part, we use the chain rule: \[ \frac{d}{dx}\left(\log\left(\frac{x}{a + bx}\right)\right) = \frac{1}{\frac{x}{a + bx}} \cdot \frac{d}{dx}\left(\frac{x}{a + bx}\right) \] Using the quotient rule: \[ \frac{d}{dx}\left(\frac{x}{a + bx}\right) = \frac{(a + bx)(1) - x(b)}{(a + bx)^2} = \frac{a + bx - bx}{(a + bx)^2} = \frac{a}{(a + bx)^2} \] Thus: \[ \frac{d}{dx}\left(\log\left(\frac{x}{a + bx}\right)\right) = \frac{(a + bx)}{x} \cdot \frac{a}{(a + bx)^2} = \frac{a}{x(a + bx)} \] Putting it all together: \[ \frac{dy}{dx} = \log\left(\frac{x}{a + bx}\right) + x \cdot \frac{a}{x(a + bx)} = \log\left(\frac{x}{a + bx}\right) + \frac{a}{a + bx} \] ### Step 2: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\log\left(\frac{x}{a + bx}\right) + \frac{a}{a + bx}\right) \] Differentiating the first term: \[ \frac{d}{dx}\left(\log\left(\frac{x}{a + bx}\right)\right) = \frac{a}{x(a + bx)} \] Differentiating the second term: \[ \frac{d}{dx}\left(\frac{a}{a + bx}\right) = -\frac{ab}{(a + bx)^2} \] Combining these: \[ \frac{d^2y}{dx^2} = \frac{a}{x(a + bx)} - \frac{ab}{(a + bx)^2} \] ### Step 3: Calculate \( x^3 \frac{d^2y}{dx^2} \) Now we multiply by \( x^3 \): \[ x^3 \frac{d^2y}{dx^2} = x^3 \left(\frac{a}{x(a + bx)} - \frac{ab}{(a + bx)^2}\right) \] This simplifies to: \[ = \frac{ax^2}{a + bx} - \frac{abx^3}{(a + bx)^2} \] ### Final Result Thus, the final expression for \( x^3 \frac{d^2y}{dx^2} \) is: \[ x^3 \frac{d^2y}{dx^2} = \frac{ax^2}{a + bx} - \frac{abx^3}{(a + bx)^2} \]

To solve the problem, we need to find \( x^3 \frac{d^2y}{dx^2} \) where \( y = x \log\left(\frac{x}{a + bx}\right) \). ### Step 1: Differentiate \( y \) to find \( \frac{dy}{dx} \) We start with the function: \[ y = x \log\left(\frac{x}{a + bx}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Comprehension)|23 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

If y = x log ((x)/(a + bx)), " then " (x^(3) d^(2) y)/(ax^(2)) is equal to

If y=x log((x)/(a+bx)) then x^(2)(d^(2)y)/(dx^(2))=(x((dy)/(dx))-y)^(m) where

If y = In ((x)/(a + bx))^(x), "then " x^(3)(d^(y))/(dx^(2)) is equal to

y=x+e^(x), then (d^(2)y)/(dx^(2))=

If y=x log{(x)/((a+bx))], then show that x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)

If y=log_(e)((x)/(a+bx))^(x), then x^(3)y_(2)=

If (x)/(y)+(y)/(x)=2," then: "(d^(2)y)/(dx^(2))=

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If x^(2)+xy-y^(2)=1," then "(x-2y)^(3)(d^(2)y)/(dx^(2))=

CENGAGE-DIFFERENTIATION-Exercise (Single)
  1. (d^(20)y)/(dx^(20))(2cosxcos3x)i se q u a lto 2^(20)(cos2x-2^(20)os3x...

    Text Solution

    |

  2. (d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) (n !)/(x^n) ((n-2)!)/(x^n) (d...

    Text Solution

    |

  3. "If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

    Text Solution

    |

  4. If a x^2+2h x y+b y^2=1,t h e n(d^(2y))/(dx^2) is (h^2-a b)/((h x+b y)...

    Text Solution

    |

  5. "If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y(2)+xy(1) is (where ...

    Text Solution

    |

  6. If ( sin x) (cos y) = 1//2, then d^(2)y//dx^(2) at (pi//4, pi//4) is

    Text Solution

    |

  7. A function f satisfies the condition f(x)=f'(x)+f''(x)+f''(x)+…, where...

    Text Solution

    |

  8. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  9. If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is (a) a constant (b) a fun...

    Text Solution

    |

  10. "If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

    Text Solution

    |

  11. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  12. Let y=in (1+ cos x)^(2). The the value of (d^(2)y)/(dx^(2))+(2)/(e^(y/...

    Text Solution

    |

  13. x=tcost ,y=t+sintdot Then (d^(2x))/(dy^2)a tt=pi/2 is (pi+4)/2 (b) -(p...

    Text Solution

    |

  14. "Let "y=t^(10)+1 and x=t^(8)+1." Then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  15. If x = log p and y=(1)/(p), then

    Text Solution

    |

  16. If x=varphi(t), y=psi(t),t h e n(d^(2y))/(dx^2) is (varphi^(prime)psi^...

    Text Solution

    |

  17. If f(x)=x^4tan(x^3)-x1n(1+x^2), then the value of (d^4(f(x)))/(dx^4) ...

    Text Solution

    |

  18. Let g(x) be the inverse of an invertible function f(x), which is diffe...

    Text Solution

    |

  19. f(x)=e^(x)-e^(-x)-2 sin x -(2)/(3)x^(3). Then the least value of n for...

    Text Solution

    |

  20. Let y=f(x) and x=(1)/(z)." If "(d^(2)y)/(dx^(2))=lamda(z^(3))(dy)/(dz)...

    Text Solution

    |